Metamath Proof Explorer


Theorem oteqex2

Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015)

Ref Expression
Assertion oteqex2 ABC=RSTCVTV

Proof

Step Hyp Ref Expression
1 opeqex ABC=RSTABVCVRSVTV
2 opex ABV
3 2 biantrur CVABVCV
4 opex RSV
5 4 biantrur TVRSVTV
6 1 3 5 3bitr4g ABC=RSTCVTV