Metamath Proof Explorer


Theorem opeqex

Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008)

Ref Expression
Assertion opeqex AB=CDAVBVCVDV

Proof

Step Hyp Ref Expression
1 neeq1 AB=CDABCD
2 opnz ABAVBV
3 opnz CDCVDV
4 1 2 3 3bitr3g AB=CDAVBVCVDV