Metamath Proof Explorer


Theorem otpsbas

Description: The base set of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)

Ref Expression
Hypothesis otpsstr.w K=BasendxBTopSetndxJndx˙
Assertion otpsbas BVB=BaseK

Proof

Step Hyp Ref Expression
1 otpsstr.w K=BasendxBTopSetndxJndx˙
2 1 otpsstr KStruct110
3 baseid Base=SlotBasendx
4 snsstp1 BasendxBBasendxBTopSetndxJndx˙
5 4 1 sseqtrri BasendxBK
6 2 3 5 strfv BVB=BaseK