Metamath Proof Explorer
		
		
		
		Description:  Functionality of a topological ordered space.  (Contributed by Mario
       Carneiro, 12-Nov-2015)  (Revised by AV, 9-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | otpsstr.w |  | 
				
					|  | Assertion | otpsstr |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | otpsstr.w |  | 
						
							| 2 |  | 1nn |  | 
						
							| 3 |  | basendx |  | 
						
							| 4 |  | 1lt9 |  | 
						
							| 5 |  | 9nn |  | 
						
							| 6 |  | tsetndx |  | 
						
							| 7 |  | 9lt10 |  | 
						
							| 8 |  | 10nn |  | 
						
							| 9 |  | plendx |  | 
						
							| 10 | 2 3 4 5 6 7 8 9 | strle3 |  | 
						
							| 11 | 1 10 | eqbrtri |  |