Metamath Proof Explorer
		
		
		
		Description:  The order of a topological ordered space.  (Contributed by Mario
       Carneiro, 12-Nov-2015)  (Revised by AV, 9-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | otpsstr.w |  | 
				
					|  | Assertion | otpsle |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | otpsstr.w |  | 
						
							| 2 | 1 | otpsstr |  | 
						
							| 3 |  | pleid |  | 
						
							| 4 |  | snsstp3 |  | 
						
							| 5 | 4 1 | sseqtrri |  | 
						
							| 6 | 2 3 5 | strfv |  |