Metamath Proof Explorer


Theorem otpsle

Description: The order of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015) (Revised by AV, 9-Sep-2021)

Ref Expression
Hypothesis otpsstr.w K=BasendxBTopSetndxJndx˙
Assertion otpsle ˙V˙=K

Proof

Step Hyp Ref Expression
1 otpsstr.w K=BasendxBTopSetndxJndx˙
2 1 otpsstr KStruct110
3 pleid le=Slotndx
4 snsstp3 ndx˙BasendxBTopSetndxJndx˙
5 4 1 sseqtrri ndx˙K
6 2 3 5 strfv ˙V˙=K