Metamath Proof Explorer


Theorem ov2gf

Description: The value of an operation class abstraction. A version of ovmpog using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006) (Revised by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses ov2gf.a _xA
ov2gf.c _yA
ov2gf.d _yB
ov2gf.1 _xG
ov2gf.2 _yS
ov2gf.3 x=AR=G
ov2gf.4 y=BG=S
ov2gf.5 F=xC,yDR
Assertion ov2gf ACBDSHAFB=S

Proof

Step Hyp Ref Expression
1 ov2gf.a _xA
2 ov2gf.c _yA
3 ov2gf.d _yB
4 ov2gf.1 _xG
5 ov2gf.2 _yS
6 ov2gf.3 x=AR=G
7 ov2gf.4 y=BG=S
8 ov2gf.5 F=xC,yDR
9 elex SHSV
10 4 nfel1 xGV
11 nfmpo1 _xxC,yDR
12 8 11 nfcxfr _xF
13 nfcv _xy
14 1 12 13 nfov _xAFy
15 14 4 nfeq xAFy=G
16 10 15 nfim xGVAFy=G
17 5 nfel1 ySV
18 nfmpo2 _yxC,yDR
19 8 18 nfcxfr _yF
20 2 19 3 nfov _yAFB
21 20 5 nfeq yAFB=S
22 17 21 nfim ySVAFB=S
23 6 eleq1d x=ARVGV
24 oveq1 x=AxFy=AFy
25 24 6 eqeq12d x=AxFy=RAFy=G
26 23 25 imbi12d x=ARVxFy=RGVAFy=G
27 7 eleq1d y=BGVSV
28 oveq2 y=BAFy=AFB
29 28 7 eqeq12d y=BAFy=GAFB=S
30 27 29 imbi12d y=BGVAFy=GSVAFB=S
31 8 ovmpt4g xCyDRVxFy=R
32 31 3expia xCyDRVxFy=R
33 1 2 3 16 22 26 30 32 vtocl2gaf ACBDSVAFB=S
34 9 33 syl5 ACBDSHAFB=S
35 34 3impia ACBDSHAFB=S