Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Operations
ovconst2
Next ⟩
oprssdm
Metamath Proof Explorer
Ascii
Unicode
Theorem
ovconst2
Description:
The value of a constant operation.
(Contributed by
NM
, 5-Nov-2006)
Ref
Expression
Hypothesis
oprvalconst2.1
⊢
C
∈
V
Assertion
ovconst2
⊢
R
∈
A
∧
S
∈
B
→
R
A
×
B
×
C
S
=
C
Proof
Step
Hyp
Ref
Expression
1
oprvalconst2.1
⊢
C
∈
V
2
df-ov
⊢
R
A
×
B
×
C
S
=
A
×
B
×
C
⁡
R
S
3
opelxpi
⊢
R
∈
A
∧
S
∈
B
→
R
S
∈
A
×
B
4
1
fvconst2
⊢
R
S
∈
A
×
B
→
A
×
B
×
C
⁡
R
S
=
C
5
3
4
syl
⊢
R
∈
A
∧
S
∈
B
→
A
×
B
×
C
⁡
R
S
=
C
6
2
5
eqtrid
⊢
R
∈
A
∧
S
∈
B
→
R
A
×
B
×
C
S
=
C