Metamath Proof Explorer


Theorem oveq2i

Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995)

Ref Expression
Hypothesis oveq1i.1 A=B
Assertion oveq2i CFA=CFB

Proof

Step Hyp Ref Expression
1 oveq1i.1 A=B
2 oveq2 A=BCFA=CFB
3 1 2 ax-mp CFA=CFB