Metamath Proof Explorer


Theorem ovmpoelrn

Description: An operation's value belongs to its range. (Contributed by AV, 27-Jan-2020)

Ref Expression
Hypothesis ovmpoelrn.o O=xA,yBC
Assertion ovmpoelrn xAyBCMXAYBXOYM

Proof

Step Hyp Ref Expression
1 ovmpoelrn.o O=xA,yBC
2 1 fmpo xAyBCMO:A×BM
3 fovcdm O:A×BMXAYBXOYM
4 2 3 syl3an1b xAyBCMXAYBXOYM