Metamath Proof Explorer


Theorem ovmpox

Description: The value of an operation class abstraction. Variant of ovmpoga which does not require D and x to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 20-Dec-2013)

Ref Expression
Hypotheses ovmpox.1 x=Ay=BR=S
ovmpox.2 x=AD=L
ovmpox.3 F=xC,yDR
Assertion ovmpox ACBLSHAFB=S

Proof

Step Hyp Ref Expression
1 ovmpox.1 x=Ay=BR=S
2 ovmpox.2 x=AD=L
3 ovmpox.3 F=xC,yDR
4 elex SHSV
5 3 a1i ACBLSVF=xC,yDR
6 1 adantl ACBLSVx=Ay=BR=S
7 2 adantl ACBLSVx=AD=L
8 simp1 ACBLSVAC
9 simp2 ACBLSVBL
10 simp3 ACBLSVSV
11 5 6 7 8 9 10 ovmpodx ACBLSVAFB=S
12 4 11 syl3an3 ACBLSHAFB=S