Metamath Proof Explorer


Theorem ovres

Description: The value of a restricted operation. (Contributed by FL, 10-Nov-2006)

Ref Expression
Assertion ovres ACBDAFC×DB=AFB

Proof

Step Hyp Ref Expression
1 opelxpi ACBDABC×D
2 1 fvresd ACBDFC×DAB=FAB
3 df-ov AFC×DB=FC×DAB
4 df-ov AFB=FAB
5 2 3 4 3eqtr4g ACBDAFC×DB=AFB