Metamath Proof Explorer


Theorem ovresd

Description: Lemma for converting metric theorems to metric space theorems. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ovresd.1 φAX
ovresd.2 φBX
Assertion ovresd φADX×XB=ADB

Proof

Step Hyp Ref Expression
1 ovresd.1 φAX
2 ovresd.2 φBX
3 ovres AXBXADX×XB=ADB
4 1 2 3 syl2anc φADX×XB=ADB