Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
paddval0
Next ⟩
padd01
Metamath Proof Explorer
Ascii
Unicode
Theorem
paddval0
Description:
Projective subspace sum with at least one empty set.
(Contributed by
NM
, 11-Jan-2012)
Ref
Expression
Hypotheses
padd0.a
⊢
A
=
Atoms
⁡
K
padd0.p
⊢
+
˙
=
+
𝑃
⁡
K
Assertion
paddval0
⊢
K
∈
B
∧
X
⊆
A
∧
Y
⊆
A
∧
¬
X
≠
∅
∧
Y
≠
∅
→
X
+
˙
Y
=
X
∪
Y
Proof
Step
Hyp
Ref
Expression
1
padd0.a
⊢
A
=
Atoms
⁡
K
2
padd0.p
⊢
+
˙
=
+
𝑃
⁡
K
3
1
2
elpadd0
⊢
K
∈
B
∧
X
⊆
A
∧
Y
⊆
A
∧
¬
X
≠
∅
∧
Y
≠
∅
→
q
∈
X
+
˙
Y
↔
q
∈
X
∨
q
∈
Y
4
elun
⊢
q
∈
X
∪
Y
↔
q
∈
X
∨
q
∈
Y
5
3
4
bitr4di
⊢
K
∈
B
∧
X
⊆
A
∧
Y
⊆
A
∧
¬
X
≠
∅
∧
Y
≠
∅
→
q
∈
X
+
˙
Y
↔
q
∈
X
∪
Y
6
5
eqrdv
⊢
K
∈
B
∧
X
⊆
A
∧
Y
⊆
A
∧
¬
X
≠
∅
∧
Y
≠
∅
→
X
+
˙
Y
=
X
∪
Y