Metamath Proof Explorer


Theorem padd01

Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012)

Ref Expression
Hypotheses padd0.a A=AtomsK
padd0.p +˙=+𝑃K
Assertion padd01 KBXAX+˙=X

Proof

Step Hyp Ref Expression
1 padd0.a A=AtomsK
2 padd0.p +˙=+𝑃K
3 simpl KBXAKB
4 simpr KBXAXA
5 0ss A
6 5 a1i KBXAA
7 3 4 6 3jca KBXAKBXAA
8 neirr ¬
9 8 intnan ¬X
10 1 2 paddval0 KBXAA¬XX+˙=X
11 7 9 10 sylancl KBXAX+˙=X
12 un0 X=X
13 11 12 eqtrdi KBXAX+˙=X