Description: Projective subspace sum with at least one empty set. (Contributed by NM, 11-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddval0 | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ∪ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | 1 2 | elpadd0 | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑞 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑞 ∈ 𝑋 ∨ 𝑞 ∈ 𝑌 ) ) ) |
| 4 | elun | ⊢ ( 𝑞 ∈ ( 𝑋 ∪ 𝑌 ) ↔ ( 𝑞 ∈ 𝑋 ∨ 𝑞 ∈ 𝑌 ) ) | |
| 5 | 3 4 | bitr4di | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑞 ∈ ( 𝑋 + 𝑌 ) ↔ 𝑞 ∈ ( 𝑋 ∪ 𝑌 ) ) ) |
| 6 | 5 | eqrdv | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ∪ 𝑌 ) ) |