Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
The natural numbers (i.e., finite ordinals)
peano2b
Next ⟩
nnsuc
Metamath Proof Explorer
Ascii
Unicode
Theorem
peano2b
Description:
A class belongs to omega iff its successor does.
(Contributed by
NM
, 3-Dec-1995)
Ref
Expression
Assertion
peano2b
ω
ω
⊢
A
∈
ω
↔
suc
A
∈
ω
Proof
Step
Hyp
Ref
Expression
1
limom
ω
⊢
Lim
ω
2
limsuc
ω
ω
ω
⊢
Lim
ω
→
A
∈
ω
↔
suc
A
∈
ω
3
1
2
ax-mp
ω
ω
⊢
A
∈
ω
↔
suc
A
∈
ω