Metamath Proof Explorer


Theorem pfxrn3

Description: Express the range of a prefix of a word. Stronger version of pfxrn2 . (Contributed by Thierry Arnoux, 13-Dec-2023)

Ref Expression
Assertion pfxrn3 WWordSL0WranWprefixL=W0..^L

Proof

Step Hyp Ref Expression
1 pfxres WWordSL0WWprefixL=W0..^L
2 1 rneqd WWordSL0WranWprefixL=ranW0..^L
3 df-ima W0..^L=ranW0..^L
4 2 3 eqtr4di WWordSL0WranWprefixL=W0..^L