Metamath Proof Explorer


Theorem pfxf1

Description: Condition for a prefix to be injective. (Contributed by Thierry Arnoux, 13-Dec-2023)

Ref Expression
Hypotheses pfxf1.1 φWWordS
pfxf1.2 φW:domW1-1S
pfxf1.3 φL0W
Assertion pfxf1 φWprefixL:domWprefixL1-1S

Proof

Step Hyp Ref Expression
1 pfxf1.1 φWWordS
2 pfxf1.2 φW:domW1-1S
3 pfxf1.3 φL0W
4 elfzuz3 L0WWL
5 fzoss2 WL0..^L0..^W
6 3 4 5 3syl φ0..^L0..^W
7 wrddm WWordSdomW=0..^W
8 1 7 syl φdomW=0..^W
9 6 8 sseqtrrd φ0..^LdomW
10 wrdf WWordSW:0..^WS
11 1 10 syl φW:0..^WS
12 11 6 fssresd φW0..^L:0..^LS
13 f1resf1 W:domW1-1S0..^LdomWW0..^L:0..^LSW0..^L:0..^L1-1S
14 2 9 12 13 syl3anc φW0..^L:0..^L1-1S
15 pfxres WWordSL0WWprefixL=W0..^L
16 1 3 15 syl2anc φWprefixL=W0..^L
17 pfxfn WWordSL0WWprefixLFn0..^L
18 1 3 17 syl2anc φWprefixLFn0..^L
19 18 fndmd φdomWprefixL=0..^L
20 eqidd φS=S
21 16 19 20 f1eq123d φWprefixL:domWprefixL1-1SW0..^L:0..^L1-1S
22 14 21 mpbird φWprefixL:domWprefixL1-1S