Metamath Proof Explorer


Theorem s1f1

Description: Conditions for a length 1 string to be a one-to-one function. (Contributed by Thierry Arnoux, 11-Dec-2023)

Ref Expression
Hypothesis s1f1.1 φID
Assertion s1f1 φ⟨“I”⟩:dom⟨“I”⟩1-1D

Proof

Step Hyp Ref Expression
1 s1f1.1 φID
2 0nn0 00
3 2 a1i φ00
4 f1osng 00ID0I:01-1 ontoI
5 3 1 4 syl2anc φ0I:01-1 ontoI
6 f1of1 0I:01-1 ontoI0I:01-1I
7 5 6 syl φ0I:01-1I
8 1 snssd φID
9 f1ss 0I:01-1IID0I:01-1D
10 7 8 9 syl2anc φ0I:01-1D
11 s1val ID⟨“I”⟩=0I
12 1 11 syl φ⟨“I”⟩=0I
13 s1dm dom⟨“I”⟩=0
14 13 a1i φdom⟨“I”⟩=0
15 eqidd φD=D
16 12 14 15 f1eq123d φ⟨“I”⟩:dom⟨“I”⟩1-1D0I:01-1D
17 10 16 mpbird φ⟨“I”⟩:dom⟨“I”⟩1-1D