Step |
Hyp |
Ref |
Expression |
1 |
|
s1f1.1 |
|- ( ph -> I e. D ) |
2 |
|
0nn0 |
|- 0 e. NN0 |
3 |
2
|
a1i |
|- ( ph -> 0 e. NN0 ) |
4 |
|
f1osng |
|- ( ( 0 e. NN0 /\ I e. D ) -> { <. 0 , I >. } : { 0 } -1-1-onto-> { I } ) |
5 |
3 1 4
|
syl2anc |
|- ( ph -> { <. 0 , I >. } : { 0 } -1-1-onto-> { I } ) |
6 |
|
f1of1 |
|- ( { <. 0 , I >. } : { 0 } -1-1-onto-> { I } -> { <. 0 , I >. } : { 0 } -1-1-> { I } ) |
7 |
5 6
|
syl |
|- ( ph -> { <. 0 , I >. } : { 0 } -1-1-> { I } ) |
8 |
1
|
snssd |
|- ( ph -> { I } C_ D ) |
9 |
|
f1ss |
|- ( ( { <. 0 , I >. } : { 0 } -1-1-> { I } /\ { I } C_ D ) -> { <. 0 , I >. } : { 0 } -1-1-> D ) |
10 |
7 8 9
|
syl2anc |
|- ( ph -> { <. 0 , I >. } : { 0 } -1-1-> D ) |
11 |
|
s1val |
|- ( I e. D -> <" I "> = { <. 0 , I >. } ) |
12 |
1 11
|
syl |
|- ( ph -> <" I "> = { <. 0 , I >. } ) |
13 |
|
s1dm |
|- dom <" I "> = { 0 } |
14 |
13
|
a1i |
|- ( ph -> dom <" I "> = { 0 } ) |
15 |
|
eqidd |
|- ( ph -> D = D ) |
16 |
12 14 15
|
f1eq123d |
|- ( ph -> ( <" I "> : dom <" I "> -1-1-> D <-> { <. 0 , I >. } : { 0 } -1-1-> D ) ) |
17 |
10 16
|
mpbird |
|- ( ph -> <" I "> : dom <" I "> -1-1-> D ) |