Step |
Hyp |
Ref |
Expression |
1 |
|
s2rn.i |
|- ( ph -> I e. D ) |
2 |
|
s2rn.j |
|- ( ph -> J e. D ) |
3 |
|
df-s2 |
|- <" I J "> = ( <" I "> ++ <" J "> ) |
4 |
3
|
a1i |
|- ( ph -> <" I J "> = ( <" I "> ++ <" J "> ) ) |
5 |
4
|
rneqd |
|- ( ph -> ran <" I J "> = ran ( <" I "> ++ <" J "> ) ) |
6 |
|
s1cli |
|- <" I "> e. Word _V |
7 |
|
s1cli |
|- <" J "> e. Word _V |
8 |
6 7
|
pm3.2i |
|- ( <" I "> e. Word _V /\ <" J "> e. Word _V ) |
9 |
|
ccatrn |
|- ( ( <" I "> e. Word _V /\ <" J "> e. Word _V ) -> ran ( <" I "> ++ <" J "> ) = ( ran <" I "> u. ran <" J "> ) ) |
10 |
8 9
|
mp1i |
|- ( ph -> ran ( <" I "> ++ <" J "> ) = ( ran <" I "> u. ran <" J "> ) ) |
11 |
|
s1rn |
|- ( I e. D -> ran <" I "> = { I } ) |
12 |
1 11
|
syl |
|- ( ph -> ran <" I "> = { I } ) |
13 |
|
s1rn |
|- ( J e. D -> ran <" J "> = { J } ) |
14 |
2 13
|
syl |
|- ( ph -> ran <" J "> = { J } ) |
15 |
12 14
|
uneq12d |
|- ( ph -> ( ran <" I "> u. ran <" J "> ) = ( { I } u. { J } ) ) |
16 |
|
df-pr |
|- { I , J } = ( { I } u. { J } ) |
17 |
15 16
|
eqtr4di |
|- ( ph -> ( ran <" I "> u. ran <" J "> ) = { I , J } ) |
18 |
5 10 17
|
3eqtrd |
|- ( ph -> ran <" I J "> = { I , J } ) |