Metamath Proof Explorer


Theorem pfxfn

Description: Value of the prefix extractor as function with domain. (Contributed by AV, 2-May-2020)

Ref Expression
Assertion pfxfn SWordVL0SSprefixLFn0..^L

Proof

Step Hyp Ref Expression
1 pfxf SWordVL0SSprefixL:0..^LV
2 1 ffnd SWordVL0SSprefixLFn0..^L