Metamath Proof Explorer


Theorem pi1id

Description: The identity element of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015) (Revised by Mario Carneiro, 10-Aug-2015)

Ref Expression
Hypotheses pi1grp.2 G = J π 1 Y
pi1id.3 0 ˙ = 0 1 × Y
Assertion pi1id J TopOn X Y X 0 ˙ ph J = 0 G

Proof

Step Hyp Ref Expression
1 pi1grp.2 G = J π 1 Y
2 pi1id.3 0 ˙ = 0 1 × Y
3 eqid Base G = Base G
4 simpl J TopOn X Y X J TopOn X
5 simpr J TopOn X Y X Y X
6 1 3 4 5 2 pi1grplem J TopOn X Y X G Grp 0 ˙ ph J = 0 G
7 6 simprd J TopOn X Y X 0 ˙ ph J = 0 G