Metamath Proof Explorer


Theorem pi1id

Description: The identity element of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015) (Revised by Mario Carneiro, 10-Aug-2015)

Ref Expression
Hypotheses pi1grp.2 𝐺 = ( 𝐽 π1 𝑌 )
pi1id.3 0 = ( ( 0 [,] 1 ) × { 𝑌 } )
Assertion pi1id ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌𝑋 ) → [ 0 ] ( ≃ph𝐽 ) = ( 0g𝐺 ) )

Proof

Step Hyp Ref Expression
1 pi1grp.2 𝐺 = ( 𝐽 π1 𝑌 )
2 pi1id.3 0 = ( ( 0 [,] 1 ) × { 𝑌 } )
3 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
4 simpl ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
5 simpr ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌𝑋 ) → 𝑌𝑋 )
6 1 3 4 5 2 pi1grplem ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌𝑋 ) → ( 𝐺 ∈ Grp ∧ [ 0 ] ( ≃ph𝐽 ) = ( 0g𝐺 ) ) )
7 6 simprd ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌𝑋 ) → [ 0 ] ( ≃ph𝐽 ) = ( 0g𝐺 ) )