Description: The identity element of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015) (Revised by Mario Carneiro, 10-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pi1grp.2 | ⊢ 𝐺 = ( 𝐽 π1 𝑌 ) | |
| pi1id.3 | ⊢ 0 = ( ( 0 [,] 1 ) × { 𝑌 } ) | ||
| Assertion | pi1id | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → [ 0 ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ 𝐺 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pi1grp.2 | ⊢ 𝐺 = ( 𝐽 π1 𝑌 ) | |
| 2 | pi1id.3 | ⊢ 0 = ( ( 0 [,] 1 ) × { 𝑌 } ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 4 | simpl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 5 | simpr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → 𝑌 ∈ 𝑋 ) | |
| 6 | 1 3 4 5 2 | pi1grplem | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → ( 𝐺 ∈ Grp ∧ [ 0 ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ 𝐺 ) ) ) | 
| 7 | 6 | simprd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑌 ∈ 𝑋 ) → [ 0 ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ 𝐺 ) ) |