| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1grp.2 |
⊢ 𝐺 = ( 𝐽 π1 𝑌 ) |
| 2 |
|
pi1inv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
| 3 |
|
pi1inv.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 |
|
pi1inv.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑋 ) |
| 5 |
|
pi1inv.f |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 6 |
|
pi1inv.0 |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 𝑌 ) |
| 7 |
|
pi1inv.1 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = 𝑌 ) |
| 8 |
|
pi1inv.i |
⊢ 𝐼 = ( 𝑥 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 − 𝑥 ) ) ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 11 |
8
|
pcorevcl |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐼 ∈ ( II Cn 𝐽 ) ∧ ( 𝐼 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 12 |
5 11
|
syl |
⊢ ( 𝜑 → ( 𝐼 ∈ ( II Cn 𝐽 ) ∧ ( 𝐼 ‘ 0 ) = ( 𝐹 ‘ 1 ) ∧ ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 13 |
12
|
simp1d |
⊢ ( 𝜑 → 𝐼 ∈ ( II Cn 𝐽 ) ) |
| 14 |
12
|
simp2d |
⊢ ( 𝜑 → ( 𝐼 ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
| 15 |
14 7
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 0 ) = 𝑌 ) |
| 16 |
12
|
simp3d |
⊢ ( 𝜑 → ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
| 17 |
16 6
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ‘ 1 ) = 𝑌 ) |
| 18 |
9
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
| 19 |
1 3 4 18
|
pi1eluni |
⊢ ( 𝜑 → ( 𝐼 ∈ ∪ ( Base ‘ 𝐺 ) ↔ ( 𝐼 ∈ ( II Cn 𝐽 ) ∧ ( 𝐼 ‘ 0 ) = 𝑌 ∧ ( 𝐼 ‘ 1 ) = 𝑌 ) ) ) |
| 20 |
13 15 17 19
|
mpbir3and |
⊢ ( 𝜑 → 𝐼 ∈ ∪ ( Base ‘ 𝐺 ) ) |
| 21 |
1 3 4 18
|
pi1eluni |
⊢ ( 𝜑 → ( 𝐹 ∈ ∪ ( Base ‘ 𝐺 ) ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ∧ ( 𝐹 ‘ 1 ) = 𝑌 ) ) ) |
| 22 |
5 6 7 21
|
mpbir3and |
⊢ ( 𝜑 → 𝐹 ∈ ∪ ( Base ‘ 𝐺 ) ) |
| 23 |
1 9 3 4 10 20 22
|
pi1addval |
⊢ ( 𝜑 → ( [ 𝐼 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝐺 ) [ 𝐹 ] ( ≃ph ‘ 𝐽 ) ) = [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ] ( ≃ph ‘ 𝐽 ) ) |
| 24 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
| 26 |
|
eqid |
⊢ ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 1 ) } ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 1 ) } ) |
| 27 |
8 26
|
pcorev |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 1 ) } ) ) |
| 28 |
5 27
|
syl |
⊢ ( 𝜑 → ( 𝐼 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 1 ) } ) ) |
| 29 |
7
|
sneqd |
⊢ ( 𝜑 → { ( 𝐹 ‘ 1 ) } = { 𝑌 } ) |
| 30 |
29
|
xpeq2d |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝐹 ‘ 1 ) } ) = ( ( 0 [,] 1 ) × { 𝑌 } ) ) |
| 31 |
28 30
|
breqtrd |
⊢ ( 𝜑 → ( 𝐼 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) ( ( 0 [,] 1 ) × { 𝑌 } ) ) |
| 32 |
25 31
|
erthi |
⊢ ( 𝜑 → [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ] ( ≃ph ‘ 𝐽 ) = [ ( ( 0 [,] 1 ) × { 𝑌 } ) ] ( ≃ph ‘ 𝐽 ) ) |
| 33 |
|
eqid |
⊢ ( ( 0 [,] 1 ) × { 𝑌 } ) = ( ( 0 [,] 1 ) × { 𝑌 } ) |
| 34 |
1 9 3 4 33
|
pi1grplem |
⊢ ( 𝜑 → ( 𝐺 ∈ Grp ∧ [ ( ( 0 [,] 1 ) × { 𝑌 } ) ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ 𝐺 ) ) ) |
| 35 |
34
|
simprd |
⊢ ( 𝜑 → [ ( ( 0 [,] 1 ) × { 𝑌 } ) ] ( ≃ph ‘ 𝐽 ) = ( 0g ‘ 𝐺 ) ) |
| 36 |
23 32 35
|
3eqtrd |
⊢ ( 𝜑 → ( [ 𝐼 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝐺 ) [ 𝐹 ] ( ≃ph ‘ 𝐽 ) ) = ( 0g ‘ 𝐺 ) ) |
| 37 |
34
|
simpld |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 38 |
1 9 3 4 5 6 7
|
elpi1i |
⊢ ( 𝜑 → [ 𝐹 ] ( ≃ph ‘ 𝐽 ) ∈ ( Base ‘ 𝐺 ) ) |
| 39 |
1 9 3 4 13 15 17
|
elpi1i |
⊢ ( 𝜑 → [ 𝐼 ] ( ≃ph ‘ 𝐽 ) ∈ ( Base ‘ 𝐺 ) ) |
| 40 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 41 |
9 10 40 2
|
grpinvid2 |
⊢ ( ( 𝐺 ∈ Grp ∧ [ 𝐹 ] ( ≃ph ‘ 𝐽 ) ∈ ( Base ‘ 𝐺 ) ∧ [ 𝐼 ] ( ≃ph ‘ 𝐽 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑁 ‘ [ 𝐹 ] ( ≃ph ‘ 𝐽 ) ) = [ 𝐼 ] ( ≃ph ‘ 𝐽 ) ↔ ( [ 𝐼 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝐺 ) [ 𝐹 ] ( ≃ph ‘ 𝐽 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 42 |
37 38 39 41
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ [ 𝐹 ] ( ≃ph ‘ 𝐽 ) ) = [ 𝐼 ] ( ≃ph ‘ 𝐽 ) ↔ ( [ 𝐼 ] ( ≃ph ‘ 𝐽 ) ( +g ‘ 𝐺 ) [ 𝐹 ] ( ≃ph ‘ 𝐽 ) ) = ( 0g ‘ 𝐺 ) ) ) |
| 43 |
36 42
|
mpbird |
⊢ ( 𝜑 → ( 𝑁 ‘ [ 𝐹 ] ( ≃ph ‘ 𝐽 ) ) = [ 𝐼 ] ( ≃ph ‘ 𝐽 ) ) |