| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pi1xfr.p |
⊢ 𝑃 = ( 𝐽 π1 ( 𝐹 ‘ 0 ) ) |
| 2 |
|
pi1xfr.q |
⊢ 𝑄 = ( 𝐽 π1 ( 𝐹 ‘ 1 ) ) |
| 3 |
|
pi1xfr.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
pi1xfr.g |
⊢ 𝐺 = ran ( 𝑔 ∈ ∪ 𝐵 ↦ 〈 [ 𝑔 ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) |
| 5 |
|
pi1xfr.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 6 |
|
pi1xfr.f |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 7 |
|
pi1xfrval.i |
⊢ ( 𝜑 → 𝐼 ∈ ( II Cn 𝐽 ) ) |
| 8 |
|
pi1xfrval.1 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐼 ‘ 0 ) ) |
| 9 |
|
pi1xfrval.2 |
⊢ ( 𝜑 → ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
| 10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 11 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 12 |
|
cnf2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( II Cn 𝐽 ) ) → 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
| 13 |
11 5 6 12
|
mp3an2i |
⊢ ( 𝜑 → 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
| 14 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 15 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 0 ) ∈ 𝑋 ) |
| 16 |
13 14 15
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ 𝑋 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 0 ) ∈ 𝑋 ) |
| 18 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
| 19 |
1 5 16 18
|
pi1eluni |
⊢ ( 𝜑 → ( 𝑔 ∈ ∪ 𝐵 ↔ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( 𝑔 ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) ) |
| 20 |
19
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( 𝑔 ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
| 21 |
20
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝑔 ∈ ( II Cn 𝐽 ) ) |
| 22 |
20
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
| 23 |
20
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
| 24 |
1 3 10 17 21 22 23
|
elpi1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ∈ 𝐵 ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 26 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 27 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 1 ) ∈ 𝑋 ) |
| 28 |
13 26 27
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝑋 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 1 ) ∈ 𝑋 ) |
| 30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝐼 ∈ ( II Cn 𝐽 ) ) |
| 31 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 32 |
21 31 23
|
pcocn |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ∈ ( II Cn 𝐽 ) ) |
| 33 |
21 31
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) = ( 𝑔 ‘ 0 ) ) |
| 34 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
| 35 |
22 33 34
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
| 36 |
30 32 35
|
pcocn |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ( II Cn 𝐽 ) ) |
| 37 |
30 32
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐼 ‘ 0 ) ) |
| 38 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 1 ) = ( 𝐼 ‘ 0 ) ) |
| 39 |
37 38
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
| 40 |
30 32
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) ) |
| 41 |
21 31
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 42 |
40 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
| 43 |
2 25 10 29 36 39 42
|
elpi1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ∈ ( Base ‘ 𝑄 ) ) |
| 44 |
|
eceq1 |
⊢ ( 𝑔 = ℎ → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) |
| 45 |
|
oveq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) = ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝑔 = ℎ → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) = ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) |
| 47 |
46
|
eceq1d |
⊢ ( 𝑔 = ℎ → [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) = [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ) |
| 48 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) |
| 49 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
| 50 |
22
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝑔 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
| 51 |
21
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝑔 ∈ ( II Cn 𝐽 ) ) |
| 52 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
| 53 |
51 52
|
pco0 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) = ( 𝑔 ‘ 0 ) ) |
| 54 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
| 55 |
50 53 54
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝐼 ‘ 1 ) = ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
| 56 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝐼 ∈ ( II Cn 𝐽 ) ) |
| 57 |
49 56
|
erref |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝐼 ( ≃ph ‘ 𝐽 ) 𝐼 ) |
| 58 |
23
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝑔 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
| 59 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) |
| 60 |
49 51
|
erth |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝑔 ( ≃ph ‘ 𝐽 ) ℎ ↔ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) |
| 61 |
59 60
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝑔 ( ≃ph ‘ 𝐽 ) ℎ ) |
| 62 |
49 52
|
erref |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝐹 ( ≃ph ‘ 𝐽 ) 𝐹 ) |
| 63 |
58 61 62
|
pcohtpy |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) |
| 64 |
55 57 63
|
pcohtpy |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( ≃ph ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) |
| 65 |
49 64
|
erthi |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) = [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ) |
| 66 |
4 24 43 44 47 65
|
fliftfund |
⊢ ( 𝜑 → Fun 𝐺 ) |
| 67 |
4 24 43
|
fliftf |
⊢ ( 𝜑 → ( Fun 𝐺 ↔ 𝐺 : ran ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) ⟶ ( Base ‘ 𝑄 ) ) ) |
| 68 |
66 67
|
mpbid |
⊢ ( 𝜑 → 𝐺 : ran ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) ⟶ ( Base ‘ 𝑄 ) ) |
| 69 |
1 5 16 18
|
pi1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ) |
| 70 |
|
df-qs |
⊢ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) = { 𝑠 ∣ ∃ 𝑔 ∈ ∪ 𝐵 𝑠 = [ 𝑔 ] ( ≃ph ‘ 𝐽 ) } |
| 71 |
|
eqid |
⊢ ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) = ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) |
| 72 |
71
|
rnmpt |
⊢ ran ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) = { 𝑠 ∣ ∃ 𝑔 ∈ ∪ 𝐵 𝑠 = [ 𝑔 ] ( ≃ph ‘ 𝐽 ) } |
| 73 |
70 72
|
eqtr4i |
⊢ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) = ran ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) |
| 74 |
69 73
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ran ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) ) |
| 75 |
74
|
feq2d |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ ( Base ‘ 𝑄 ) ↔ 𝐺 : ran ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) ⟶ ( Base ‘ 𝑄 ) ) ) |
| 76 |
68 75
|
mpbird |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ ( Base ‘ 𝑄 ) ) |