Step |
Hyp |
Ref |
Expression |
1 |
|
pi1xfr.p |
⊢ 𝑃 = ( 𝐽 π1 ( 𝐹 ‘ 0 ) ) |
2 |
|
pi1xfr.q |
⊢ 𝑄 = ( 𝐽 π1 ( 𝐹 ‘ 1 ) ) |
3 |
|
pi1xfr.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
pi1xfr.g |
⊢ 𝐺 = ran ( 𝑔 ∈ ∪ 𝐵 ↦ 〈 [ 𝑔 ] ( ≃ph ‘ 𝐽 ) , [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) 〉 ) |
5 |
|
pi1xfr.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
6 |
|
pi1xfr.f |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
7 |
|
pi1xfrval.i |
⊢ ( 𝜑 → 𝐼 ∈ ( II Cn 𝐽 ) ) |
8 |
|
pi1xfrval.1 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐼 ‘ 0 ) ) |
9 |
|
pi1xfrval.2 |
⊢ ( 𝜑 → ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
11 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
12 |
|
cnf2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( II Cn 𝐽 ) ) → 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
13 |
11 5 6 12
|
mp3an2i |
⊢ ( 𝜑 → 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
14 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
15 |
|
ffvelrn |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 0 ) ∈ 𝑋 ) |
16 |
13 14 15
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ 𝑋 ) |
17 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 0 ) ∈ 𝑋 ) |
18 |
3
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑃 ) ) |
19 |
1 5 16 18
|
pi1eluni |
⊢ ( 𝜑 → ( 𝑔 ∈ ∪ 𝐵 ↔ ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( 𝑔 ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) ) |
20 |
19
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ∈ ( II Cn 𝐽 ) ∧ ( 𝑔 ‘ 0 ) = ( 𝐹 ‘ 0 ) ∧ ( 𝑔 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) ) |
21 |
20
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝑔 ∈ ( II Cn 𝐽 ) ) |
22 |
20
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
23 |
20
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
24 |
1 3 10 17 21 22 23
|
elpi1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ∈ 𝐵 ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
26 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
27 |
|
ffvelrn |
⊢ ( ( 𝐹 : ( 0 [,] 1 ) ⟶ 𝑋 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 1 ) ∈ 𝑋 ) |
28 |
13 26 27
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ 𝑋 ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 1 ) ∈ 𝑋 ) |
30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝐼 ∈ ( II Cn 𝐽 ) ) |
31 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
32 |
21 31 23
|
pcocn |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ∈ ( II Cn 𝐽 ) ) |
33 |
21 31
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) = ( 𝑔 ‘ 0 ) ) |
34 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
35 |
22 33 34
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ‘ 1 ) = ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
36 |
30 32 35
|
pcocn |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ∈ ( II Cn 𝐽 ) ) |
37 |
30 32
|
pco0 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐼 ‘ 0 ) ) |
38 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( 𝐹 ‘ 1 ) = ( 𝐼 ‘ 0 ) ) |
39 |
37 38
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 0 ) = ( 𝐹 ‘ 1 ) ) |
40 |
30 32
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) ) |
41 |
21 31
|
pco1 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
42 |
40 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → ( ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
43 |
2 25 10 29 36 39 42
|
elpi1i |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ∪ 𝐵 ) → [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ∈ ( Base ‘ 𝑄 ) ) |
44 |
|
eceq1 |
⊢ ( 𝑔 = ℎ → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) |
45 |
|
oveq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) = ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝑔 = ℎ → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) = ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) |
47 |
46
|
eceq1d |
⊢ ( 𝑔 = ℎ → [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) = [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ) |
48 |
|
phtpcer |
⊢ ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) |
49 |
48
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( ≃ph ‘ 𝐽 ) Er ( II Cn 𝐽 ) ) |
50 |
22
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝑔 ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
51 |
21
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝑔 ∈ ( II Cn 𝐽 ) ) |
52 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝐹 ∈ ( II Cn 𝐽 ) ) |
53 |
51 52
|
pco0 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) = ( 𝑔 ‘ 0 ) ) |
54 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝐼 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
55 |
50 53 54
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝐼 ‘ 1 ) = ( ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ‘ 0 ) ) |
56 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝐼 ∈ ( II Cn 𝐽 ) ) |
57 |
49 56
|
erref |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝐼 ( ≃ph ‘ 𝐽 ) 𝐼 ) |
58 |
23
|
3ad2antr1 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝑔 ‘ 1 ) = ( 𝐹 ‘ 0 ) ) |
59 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) |
60 |
49 51
|
erth |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝑔 ( ≃ph ‘ 𝐽 ) ℎ ↔ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) |
61 |
59 60
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝑔 ( ≃ph ‘ 𝐽 ) ℎ ) |
62 |
49 52
|
erref |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → 𝐹 ( ≃ph ‘ 𝐽 ) 𝐹 ) |
63 |
58 61 62
|
pcohtpy |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ( ≃ph ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) |
64 |
55 57 63
|
pcohtpy |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ( ≃ph ‘ 𝐽 ) ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ) |
65 |
49 64
|
erthi |
⊢ ( ( 𝜑 ∧ ( 𝑔 ∈ ∪ 𝐵 ∧ ℎ ∈ ∪ 𝐵 ∧ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) = [ ℎ ] ( ≃ph ‘ 𝐽 ) ) ) → [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( 𝑔 ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) = [ ( 𝐼 ( *𝑝 ‘ 𝐽 ) ( ℎ ( *𝑝 ‘ 𝐽 ) 𝐹 ) ) ] ( ≃ph ‘ 𝐽 ) ) |
66 |
4 24 43 44 47 65
|
fliftfund |
⊢ ( 𝜑 → Fun 𝐺 ) |
67 |
4 24 43
|
fliftf |
⊢ ( 𝜑 → ( Fun 𝐺 ↔ 𝐺 : ran ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) ⟶ ( Base ‘ 𝑄 ) ) ) |
68 |
66 67
|
mpbid |
⊢ ( 𝜑 → 𝐺 : ran ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) ⟶ ( Base ‘ 𝑄 ) ) |
69 |
1 5 16 18
|
pi1bas2 |
⊢ ( 𝜑 → 𝐵 = ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) ) |
70 |
|
df-qs |
⊢ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) = { 𝑠 ∣ ∃ 𝑔 ∈ ∪ 𝐵 𝑠 = [ 𝑔 ] ( ≃ph ‘ 𝐽 ) } |
71 |
|
eqid |
⊢ ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) = ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) |
72 |
71
|
rnmpt |
⊢ ran ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) = { 𝑠 ∣ ∃ 𝑔 ∈ ∪ 𝐵 𝑠 = [ 𝑔 ] ( ≃ph ‘ 𝐽 ) } |
73 |
70 72
|
eqtr4i |
⊢ ( ∪ 𝐵 / ( ≃ph ‘ 𝐽 ) ) = ran ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) |
74 |
69 73
|
eqtrdi |
⊢ ( 𝜑 → 𝐵 = ran ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) ) |
75 |
74
|
feq2d |
⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ ( Base ‘ 𝑄 ) ↔ 𝐺 : ran ( 𝑔 ∈ ∪ 𝐵 ↦ [ 𝑔 ] ( ≃ph ‘ 𝐽 ) ) ⟶ ( Base ‘ 𝑄 ) ) ) |
76 |
68 75
|
mpbird |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ ( Base ‘ 𝑄 ) ) |