Step |
Hyp |
Ref |
Expression |
1 |
|
pcohtpy.4 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 0 ) ) |
2 |
|
pcohtpy.5 |
⊢ ( 𝜑 → 𝐹 ( ≃ph ‘ 𝐽 ) 𝐻 ) |
3 |
|
pcohtpy.6 |
⊢ ( 𝜑 → 𝐺 ( ≃ph ‘ 𝐽 ) 𝐾 ) |
4 |
|
isphtpc |
⊢ ( 𝐹 ( ≃ph ‘ 𝐽 ) 𝐻 ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐻 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ) ) |
5 |
2 4
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐻 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ) ) |
6 |
5
|
simp1d |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
7 |
|
isphtpc |
⊢ ( 𝐺 ( ≃ph ‘ 𝐽 ) 𝐾 ↔ ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝐾 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ≠ ∅ ) ) |
8 |
3 7
|
sylib |
⊢ ( 𝜑 → ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝐾 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ≠ ∅ ) ) |
9 |
8
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
10 |
6 9 1
|
pcocn |
⊢ ( 𝜑 → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ∈ ( II Cn 𝐽 ) ) |
11 |
5
|
simp2d |
⊢ ( 𝜑 → 𝐻 ∈ ( II Cn 𝐽 ) ) |
12 |
8
|
simp2d |
⊢ ( 𝜑 → 𝐾 ∈ ( II Cn 𝐽 ) ) |
13 |
|
phtpc01 |
⊢ ( 𝐹 ( ≃ph ‘ 𝐽 ) 𝐻 → ( ( 𝐹 ‘ 0 ) = ( 𝐻 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) ) |
14 |
2 13
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) = ( 𝐻 ‘ 0 ) ∧ ( 𝐹 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) ) |
15 |
14
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) |
16 |
|
phtpc01 |
⊢ ( 𝐺 ( ≃ph ‘ 𝐽 ) 𝐾 → ( ( 𝐺 ‘ 0 ) = ( 𝐾 ‘ 0 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐾 ‘ 1 ) ) ) |
17 |
3 16
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 0 ) = ( 𝐾 ‘ 0 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐾 ‘ 1 ) ) ) |
18 |
17
|
simpld |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = ( 𝐾 ‘ 0 ) ) |
19 |
1 15 18
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐻 ‘ 1 ) = ( 𝐾 ‘ 0 ) ) |
20 |
11 12 19
|
pcocn |
⊢ ( 𝜑 → ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ∈ ( II Cn 𝐽 ) ) |
21 |
5
|
simp3d |
⊢ ( 𝜑 → ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ) |
22 |
|
n0 |
⊢ ( ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ↔ ∃ 𝑚 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |
23 |
21 22
|
sylib |
⊢ ( 𝜑 → ∃ 𝑚 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |
24 |
8
|
simp3d |
⊢ ( 𝜑 → ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ≠ ∅ ) |
25 |
|
n0 |
⊢ ( ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ≠ ∅ ↔ ∃ 𝑛 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) |
26 |
24 25
|
sylib |
⊢ ( 𝜑 → ∃ 𝑛 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) |
27 |
|
exdistrv |
⊢ ( ∃ 𝑚 ∃ 𝑛 ( 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ∧ 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) ↔ ( ∃ 𝑚 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ∧ ∃ 𝑛 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) ) |
28 |
23 26 27
|
sylanbrc |
⊢ ( 𝜑 → ∃ 𝑚 ∃ 𝑛 ( 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ∧ 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) ) |
29 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ∧ 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) ) → ( 𝐹 ‘ 1 ) = ( 𝐺 ‘ 0 ) ) |
30 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ∧ 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) ) → 𝐹 ( ≃ph ‘ 𝐽 ) 𝐻 ) |
31 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ∧ 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) ) → 𝐺 ( ≃ph ‘ 𝐽 ) 𝐾 ) |
32 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑚 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑛 𝑦 ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑚 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑛 𝑦 ) ) ) |
33 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ∧ 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) ) → 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |
34 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ∧ 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) ) → 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) |
35 |
29 30 31 32 33 34
|
pcohtpylem |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ∧ 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) ) → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ if ( 𝑥 ≤ ( 1 / 2 ) , ( ( 2 · 𝑥 ) 𝑚 𝑦 ) , ( ( ( 2 · 𝑥 ) − 1 ) 𝑛 𝑦 ) ) ) ∈ ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( PHtpy ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ) ) |
36 |
35
|
ne0d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ∧ 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( PHtpy ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ) ≠ ∅ ) |
37 |
36
|
ex |
⊢ ( 𝜑 → ( ( 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ∧ 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( PHtpy ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ) ≠ ∅ ) ) |
38 |
37
|
exlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑚 ∃ 𝑛 ( 𝑚 ∈ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐻 ) ∧ 𝑛 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐾 ) ) → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( PHtpy ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ) ≠ ∅ ) ) |
39 |
28 38
|
mpd |
⊢ ( 𝜑 → ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( PHtpy ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ) ≠ ∅ ) |
40 |
|
isphtpc |
⊢ ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( ≃ph ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ↔ ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ∈ ( II Cn 𝐽 ) ∧ ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ∈ ( II Cn 𝐽 ) ∧ ( ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( PHtpy ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ) ≠ ∅ ) ) |
41 |
10 20 39 40
|
syl3anbrc |
⊢ ( 𝜑 → ( 𝐹 ( *𝑝 ‘ 𝐽 ) 𝐺 ) ( ≃ph ‘ 𝐽 ) ( 𝐻 ( *𝑝 ‘ 𝐽 ) 𝐾 ) ) |