Step |
Hyp |
Ref |
Expression |
1 |
|
pcohtpy.4 |
|
2 |
|
pcohtpy.5 |
|
3 |
|
pcohtpy.6 |
|
4 |
|
isphtpc |
|
5 |
2 4
|
sylib |
|
6 |
5
|
simp1d |
|
7 |
|
isphtpc |
|
8 |
3 7
|
sylib |
|
9 |
8
|
simp1d |
|
10 |
6 9 1
|
pcocn |
|
11 |
5
|
simp2d |
|
12 |
8
|
simp2d |
|
13 |
|
phtpc01 |
|
14 |
2 13
|
syl |
|
15 |
14
|
simprd |
|
16 |
|
phtpc01 |
|
17 |
3 16
|
syl |
|
18 |
17
|
simpld |
|
19 |
1 15 18
|
3eqtr3d |
|
20 |
11 12 19
|
pcocn |
|
21 |
5
|
simp3d |
|
22 |
|
n0 |
|
23 |
21 22
|
sylib |
|
24 |
8
|
simp3d |
|
25 |
|
n0 |
|
26 |
24 25
|
sylib |
|
27 |
|
exdistrv |
|
28 |
23 26 27
|
sylanbrc |
|
29 |
1
|
adantr |
|
30 |
2
|
adantr |
|
31 |
3
|
adantr |
|
32 |
|
eqid |
|
33 |
|
simprl |
|
34 |
|
simprr |
|
35 |
29 30 31 32 33 34
|
pcohtpylem |
|
36 |
35
|
ne0d |
|
37 |
36
|
ex |
|
38 |
37
|
exlimdvv |
|
39 |
28 38
|
mpd |
|
40 |
|
isphtpc |
|
41 |
10 20 39 40
|
syl3anbrc |
|