Metamath Proof Explorer


Theorem pcohtpy

Description: Homotopy invariance of path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses pcohtpy.4 φ F 1 = G 0
pcohtpy.5 φ F ph J H
pcohtpy.6 φ G ph J K
Assertion pcohtpy φ F * 𝑝 J G ph J H * 𝑝 J K

Proof

Step Hyp Ref Expression
1 pcohtpy.4 φ F 1 = G 0
2 pcohtpy.5 φ F ph J H
3 pcohtpy.6 φ G ph J K
4 isphtpc F ph J H F II Cn J H II Cn J F PHtpy J H
5 2 4 sylib φ F II Cn J H II Cn J F PHtpy J H
6 5 simp1d φ F II Cn J
7 isphtpc G ph J K G II Cn J K II Cn J G PHtpy J K
8 3 7 sylib φ G II Cn J K II Cn J G PHtpy J K
9 8 simp1d φ G II Cn J
10 6 9 1 pcocn φ F * 𝑝 J G II Cn J
11 5 simp2d φ H II Cn J
12 8 simp2d φ K II Cn J
13 phtpc01 F ph J H F 0 = H 0 F 1 = H 1
14 2 13 syl φ F 0 = H 0 F 1 = H 1
15 14 simprd φ F 1 = H 1
16 phtpc01 G ph J K G 0 = K 0 G 1 = K 1
17 3 16 syl φ G 0 = K 0 G 1 = K 1
18 17 simpld φ G 0 = K 0
19 1 15 18 3eqtr3d φ H 1 = K 0
20 11 12 19 pcocn φ H * 𝑝 J K II Cn J
21 5 simp3d φ F PHtpy J H
22 n0 F PHtpy J H m m F PHtpy J H
23 21 22 sylib φ m m F PHtpy J H
24 8 simp3d φ G PHtpy J K
25 n0 G PHtpy J K n n G PHtpy J K
26 24 25 sylib φ n n G PHtpy J K
27 exdistrv m n m F PHtpy J H n G PHtpy J K m m F PHtpy J H n n G PHtpy J K
28 23 26 27 sylanbrc φ m n m F PHtpy J H n G PHtpy J K
29 1 adantr φ m F PHtpy J H n G PHtpy J K F 1 = G 0
30 2 adantr φ m F PHtpy J H n G PHtpy J K F ph J H
31 3 adantr φ m F PHtpy J H n G PHtpy J K G ph J K
32 eqid x 0 1 , y 0 1 if x 1 2 2 x m y 2 x 1 n y = x 0 1 , y 0 1 if x 1 2 2 x m y 2 x 1 n y
33 simprl φ m F PHtpy J H n G PHtpy J K m F PHtpy J H
34 simprr φ m F PHtpy J H n G PHtpy J K n G PHtpy J K
35 29 30 31 32 33 34 pcohtpylem φ m F PHtpy J H n G PHtpy J K x 0 1 , y 0 1 if x 1 2 2 x m y 2 x 1 n y F * 𝑝 J G PHtpy J H * 𝑝 J K
36 35 ne0d φ m F PHtpy J H n G PHtpy J K F * 𝑝 J G PHtpy J H * 𝑝 J K
37 36 ex φ m F PHtpy J H n G PHtpy J K F * 𝑝 J G PHtpy J H * 𝑝 J K
38 37 exlimdvv φ m n m F PHtpy J H n G PHtpy J K F * 𝑝 J G PHtpy J H * 𝑝 J K
39 28 38 mpd φ F * 𝑝 J G PHtpy J H * 𝑝 J K
40 isphtpc F * 𝑝 J G ph J H * 𝑝 J K F * 𝑝 J G II Cn J H * 𝑝 J K II Cn J F * 𝑝 J G PHtpy J H * 𝑝 J K
41 10 20 39 40 syl3anbrc φ F * 𝑝 J G ph J H * 𝑝 J K