Metamath Proof Explorer


Theorem isphtpc

Description: The relation "is path homotopic to". (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 5-Sep-2015)

Ref Expression
Assertion isphtpc F ph J G F II Cn J G II Cn J F PHtpy J G

Proof

Step Hyp Ref Expression
1 df-br F ph J G F G ph J
2 df-phtpc ph = j Top f g | f g II Cn j f PHtpy j g
3 2 mptrcl F G ph J J Top
4 1 3 sylbi F ph J G J Top
5 cntop2 F II Cn J J Top
6 5 3ad2ant1 F II Cn J G II Cn J F PHtpy J G J Top
7 oveq2 j = J II Cn j = II Cn J
8 7 sseq2d j = J f g II Cn j f g II Cn J
9 vex f V
10 vex g V
11 9 10 prss f II Cn J g II Cn J f g II Cn J
12 8 11 bitr4di j = J f g II Cn j f II Cn J g II Cn J
13 fveq2 j = J PHtpy j = PHtpy J
14 13 oveqd j = J f PHtpy j g = f PHtpy J g
15 14 neeq1d j = J f PHtpy j g f PHtpy J g
16 12 15 anbi12d j = J f g II Cn j f PHtpy j g f II Cn J g II Cn J f PHtpy J g
17 16 opabbidv j = J f g | f g II Cn j f PHtpy j g = f g | f II Cn J g II Cn J f PHtpy J g
18 ovex II Cn J V
19 18 18 xpex II Cn J × II Cn J V
20 opabssxp f g | f II Cn J g II Cn J f PHtpy J g II Cn J × II Cn J
21 19 20 ssexi f g | f II Cn J g II Cn J f PHtpy J g V
22 17 2 21 fvmpt J Top ph J = f g | f II Cn J g II Cn J f PHtpy J g
23 22 breqd J Top F ph J G F f g | f II Cn J g II Cn J f PHtpy J g G
24 oveq12 f = F g = G f PHtpy J g = F PHtpy J G
25 24 neeq1d f = F g = G f PHtpy J g F PHtpy J G
26 eqid f g | f II Cn J g II Cn J f PHtpy J g = f g | f II Cn J g II Cn J f PHtpy J g
27 25 26 brab2a F f g | f II Cn J g II Cn J f PHtpy J g G F II Cn J G II Cn J F PHtpy J G
28 df-3an F II Cn J G II Cn J F PHtpy J G F II Cn J G II Cn J F PHtpy J G
29 27 28 bitr4i F f g | f II Cn J g II Cn J f PHtpy J g G F II Cn J G II Cn J F PHtpy J G
30 23 29 bitrdi J Top F ph J G F II Cn J G II Cn J F PHtpy J G
31 4 6 30 pm5.21nii F ph J G F II Cn J G II Cn J F PHtpy J G