Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
|- ( F ( ~=ph ` J ) G <-> <. F , G >. e. ( ~=ph ` J ) ) |
2 |
|
df-phtpc |
|- ~=ph = ( j e. Top |-> { <. f , g >. | ( { f , g } C_ ( II Cn j ) /\ ( f ( PHtpy ` j ) g ) =/= (/) ) } ) |
3 |
2
|
mptrcl |
|- ( <. F , G >. e. ( ~=ph ` J ) -> J e. Top ) |
4 |
1 3
|
sylbi |
|- ( F ( ~=ph ` J ) G -> J e. Top ) |
5 |
|
cntop2 |
|- ( F e. ( II Cn J ) -> J e. Top ) |
6 |
5
|
3ad2ant1 |
|- ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) /\ ( F ( PHtpy ` J ) G ) =/= (/) ) -> J e. Top ) |
7 |
|
oveq2 |
|- ( j = J -> ( II Cn j ) = ( II Cn J ) ) |
8 |
7
|
sseq2d |
|- ( j = J -> ( { f , g } C_ ( II Cn j ) <-> { f , g } C_ ( II Cn J ) ) ) |
9 |
|
vex |
|- f e. _V |
10 |
|
vex |
|- g e. _V |
11 |
9 10
|
prss |
|- ( ( f e. ( II Cn J ) /\ g e. ( II Cn J ) ) <-> { f , g } C_ ( II Cn J ) ) |
12 |
8 11
|
bitr4di |
|- ( j = J -> ( { f , g } C_ ( II Cn j ) <-> ( f e. ( II Cn J ) /\ g e. ( II Cn J ) ) ) ) |
13 |
|
fveq2 |
|- ( j = J -> ( PHtpy ` j ) = ( PHtpy ` J ) ) |
14 |
13
|
oveqd |
|- ( j = J -> ( f ( PHtpy ` j ) g ) = ( f ( PHtpy ` J ) g ) ) |
15 |
14
|
neeq1d |
|- ( j = J -> ( ( f ( PHtpy ` j ) g ) =/= (/) <-> ( f ( PHtpy ` J ) g ) =/= (/) ) ) |
16 |
12 15
|
anbi12d |
|- ( j = J -> ( ( { f , g } C_ ( II Cn j ) /\ ( f ( PHtpy ` j ) g ) =/= (/) ) <-> ( ( f e. ( II Cn J ) /\ g e. ( II Cn J ) ) /\ ( f ( PHtpy ` J ) g ) =/= (/) ) ) ) |
17 |
16
|
opabbidv |
|- ( j = J -> { <. f , g >. | ( { f , g } C_ ( II Cn j ) /\ ( f ( PHtpy ` j ) g ) =/= (/) ) } = { <. f , g >. | ( ( f e. ( II Cn J ) /\ g e. ( II Cn J ) ) /\ ( f ( PHtpy ` J ) g ) =/= (/) ) } ) |
18 |
|
ovex |
|- ( II Cn J ) e. _V |
19 |
18 18
|
xpex |
|- ( ( II Cn J ) X. ( II Cn J ) ) e. _V |
20 |
|
opabssxp |
|- { <. f , g >. | ( ( f e. ( II Cn J ) /\ g e. ( II Cn J ) ) /\ ( f ( PHtpy ` J ) g ) =/= (/) ) } C_ ( ( II Cn J ) X. ( II Cn J ) ) |
21 |
19 20
|
ssexi |
|- { <. f , g >. | ( ( f e. ( II Cn J ) /\ g e. ( II Cn J ) ) /\ ( f ( PHtpy ` J ) g ) =/= (/) ) } e. _V |
22 |
17 2 21
|
fvmpt |
|- ( J e. Top -> ( ~=ph ` J ) = { <. f , g >. | ( ( f e. ( II Cn J ) /\ g e. ( II Cn J ) ) /\ ( f ( PHtpy ` J ) g ) =/= (/) ) } ) |
23 |
22
|
breqd |
|- ( J e. Top -> ( F ( ~=ph ` J ) G <-> F { <. f , g >. | ( ( f e. ( II Cn J ) /\ g e. ( II Cn J ) ) /\ ( f ( PHtpy ` J ) g ) =/= (/) ) } G ) ) |
24 |
|
oveq12 |
|- ( ( f = F /\ g = G ) -> ( f ( PHtpy ` J ) g ) = ( F ( PHtpy ` J ) G ) ) |
25 |
24
|
neeq1d |
|- ( ( f = F /\ g = G ) -> ( ( f ( PHtpy ` J ) g ) =/= (/) <-> ( F ( PHtpy ` J ) G ) =/= (/) ) ) |
26 |
|
eqid |
|- { <. f , g >. | ( ( f e. ( II Cn J ) /\ g e. ( II Cn J ) ) /\ ( f ( PHtpy ` J ) g ) =/= (/) ) } = { <. f , g >. | ( ( f e. ( II Cn J ) /\ g e. ( II Cn J ) ) /\ ( f ( PHtpy ` J ) g ) =/= (/) ) } |
27 |
25 26
|
brab2a |
|- ( F { <. f , g >. | ( ( f e. ( II Cn J ) /\ g e. ( II Cn J ) ) /\ ( f ( PHtpy ` J ) g ) =/= (/) ) } G <-> ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) ) /\ ( F ( PHtpy ` J ) G ) =/= (/) ) ) |
28 |
|
df-3an |
|- ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) /\ ( F ( PHtpy ` J ) G ) =/= (/) ) <-> ( ( F e. ( II Cn J ) /\ G e. ( II Cn J ) ) /\ ( F ( PHtpy ` J ) G ) =/= (/) ) ) |
29 |
27 28
|
bitr4i |
|- ( F { <. f , g >. | ( ( f e. ( II Cn J ) /\ g e. ( II Cn J ) ) /\ ( f ( PHtpy ` J ) g ) =/= (/) ) } G <-> ( F e. ( II Cn J ) /\ G e. ( II Cn J ) /\ ( F ( PHtpy ` J ) G ) =/= (/) ) ) |
30 |
23 29
|
bitrdi |
|- ( J e. Top -> ( F ( ~=ph ` J ) G <-> ( F e. ( II Cn J ) /\ G e. ( II Cn J ) /\ ( F ( PHtpy ` J ) G ) =/= (/) ) ) ) |
31 |
4 6 30
|
pm5.21nii |
|- ( F ( ~=ph ` J ) G <-> ( F e. ( II Cn J ) /\ G e. ( II Cn J ) /\ ( F ( PHtpy ` J ) G ) =/= (/) ) ) |