Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
⊢ ( 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( ≃ph ‘ 𝐽 ) ) |
2 |
|
df-phtpc |
⊢ ≃ph = ( 𝑗 ∈ Top ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑗 ) ∧ ( 𝑓 ( PHtpy ‘ 𝑗 ) 𝑔 ) ≠ ∅ ) } ) |
3 |
2
|
mptrcl |
⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( ≃ph ‘ 𝐽 ) → 𝐽 ∈ Top ) |
4 |
1 3
|
sylbi |
⊢ ( 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 → 𝐽 ∈ Top ) |
5 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( II Cn 𝐽 ) → 𝐽 ∈ Top ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) → 𝐽 ∈ Top ) |
7 |
|
oveq2 |
⊢ ( 𝑗 = 𝐽 → ( II Cn 𝑗 ) = ( II Cn 𝐽 ) ) |
8 |
7
|
sseq2d |
⊢ ( 𝑗 = 𝐽 → ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑗 ) ↔ { 𝑓 , 𝑔 } ⊆ ( II Cn 𝐽 ) ) ) |
9 |
|
vex |
⊢ 𝑓 ∈ V |
10 |
|
vex |
⊢ 𝑔 ∈ V |
11 |
9 10
|
prss |
⊢ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) ↔ { 𝑓 , 𝑔 } ⊆ ( II Cn 𝐽 ) ) |
12 |
8 11
|
bitr4di |
⊢ ( 𝑗 = 𝐽 → ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑗 ) ↔ ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( PHtpy ‘ 𝑗 ) = ( PHtpy ‘ 𝐽 ) ) |
14 |
13
|
oveqd |
⊢ ( 𝑗 = 𝐽 → ( 𝑓 ( PHtpy ‘ 𝑗 ) 𝑔 ) = ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ) |
15 |
14
|
neeq1d |
⊢ ( 𝑗 = 𝐽 → ( ( 𝑓 ( PHtpy ‘ 𝑗 ) 𝑔 ) ≠ ∅ ↔ ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ≠ ∅ ) ) |
16 |
12 15
|
anbi12d |
⊢ ( 𝑗 = 𝐽 → ( ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑗 ) ∧ ( 𝑓 ( PHtpy ‘ 𝑗 ) 𝑔 ) ≠ ∅ ) ↔ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ≠ ∅ ) ) ) |
17 |
16
|
opabbidv |
⊢ ( 𝑗 = 𝐽 → { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ ( II Cn 𝑗 ) ∧ ( 𝑓 ( PHtpy ‘ 𝑗 ) 𝑔 ) ≠ ∅ ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ≠ ∅ ) } ) |
18 |
|
ovex |
⊢ ( II Cn 𝐽 ) ∈ V |
19 |
18 18
|
xpex |
⊢ ( ( II Cn 𝐽 ) × ( II Cn 𝐽 ) ) ∈ V |
20 |
|
opabssxp |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ≠ ∅ ) } ⊆ ( ( II Cn 𝐽 ) × ( II Cn 𝐽 ) ) |
21 |
19 20
|
ssexi |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ≠ ∅ ) } ∈ V |
22 |
17 2 21
|
fvmpt |
⊢ ( 𝐽 ∈ Top → ( ≃ph ‘ 𝐽 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ≠ ∅ ) } ) |
23 |
22
|
breqd |
⊢ ( 𝐽 ∈ Top → ( 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ↔ 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ≠ ∅ ) } 𝐺 ) ) |
24 |
|
oveq12 |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) = ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ) |
25 |
24
|
neeq1d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ≠ ∅ ↔ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) ) |
26 |
|
eqid |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ≠ ∅ ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ≠ ∅ ) } |
27 |
25 26
|
brab2a |
⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ≠ ∅ ) } 𝐺 ↔ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) ) |
28 |
|
df-3an |
⊢ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) ↔ ( ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) ) |
29 |
27 28
|
bitr4i |
⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( II Cn 𝐽 ) ∧ 𝑔 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑓 ( PHtpy ‘ 𝐽 ) 𝑔 ) ≠ ∅ ) } 𝐺 ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) ) |
30 |
23 29
|
bitrdi |
⊢ ( 𝐽 ∈ Top → ( 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) ) ) |
31 |
4 6 30
|
pm5.21nii |
⊢ ( 𝐹 ( ≃ph ‘ 𝐽 ) 𝐺 ↔ ( 𝐹 ∈ ( II Cn 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ∧ ( 𝐹 ( PHtpy ‘ 𝐽 ) 𝐺 ) ≠ ∅ ) ) |