| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phtpcrel |
|
| 2 |
|
isphtpc |
|
| 3 |
2
|
simp2bi |
|
| 4 |
2
|
simp1bi |
|
| 5 |
2
|
simp3bi |
|
| 6 |
|
n0 |
|
| 7 |
5 6
|
sylib |
|
| 8 |
4
|
adantr |
|
| 9 |
3
|
adantr |
|
| 10 |
|
eqid |
|
| 11 |
|
simpr |
|
| 12 |
8 9 10 11
|
phtpycom |
|
| 13 |
12
|
ne0d |
|
| 14 |
7 13
|
exlimddv |
|
| 15 |
|
isphtpc |
|
| 16 |
3 4 14 15
|
syl3anbrc |
|
| 17 |
4
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
|
isphtpc |
|
| 20 |
18 19
|
sylib |
|
| 21 |
20
|
simp2d |
|
| 22 |
5
|
adantr |
|
| 23 |
22 6
|
sylib |
|
| 24 |
20
|
simp3d |
|
| 25 |
|
n0 |
|
| 26 |
24 25
|
sylib |
|
| 27 |
|
exdistrv |
|
| 28 |
23 26 27
|
sylanbrc |
|
| 29 |
|
eqid |
|
| 30 |
17
|
adantr |
|
| 31 |
20
|
simp1d |
|
| 32 |
31
|
adantr |
|
| 33 |
21
|
adantr |
|
| 34 |
|
simprl |
|
| 35 |
|
simprr |
|
| 36 |
29 30 32 33 34 35
|
phtpycc |
|
| 37 |
36
|
ne0d |
|
| 38 |
37
|
ex |
|
| 39 |
38
|
exlimdvv |
|
| 40 |
28 39
|
mpd |
|
| 41 |
|
isphtpc |
|
| 42 |
17 21 40 41
|
syl3anbrc |
|
| 43 |
|
eqid |
|
| 44 |
|
id |
|
| 45 |
43 44
|
phtpyid |
|
| 46 |
45
|
ne0d |
|
| 47 |
46
|
ancli |
|
| 48 |
47
|
pm4.71ri |
|
| 49 |
|
df-3an |
|
| 50 |
|
3ancomb |
|
| 51 |
48 49 50
|
3bitr2i |
|
| 52 |
|
isphtpc |
|
| 53 |
51 52
|
bitr4i |
|
| 54 |
1 16 42 53
|
iseri |
|