Metamath Proof Explorer


Theorem phtpcer

Description: Path homotopy is an equivalence relation. Proposition 1.2 of Hatcher p. 26. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 6-Jul-2015) (Proof shortened by AV, 1-May-2021)

Ref Expression
Assertion phtpcer phJErIICnJ

Proof

Step Hyp Ref Expression
1 phtpcrel RelphJ
2 isphtpc xphJyxIICnJyIICnJxPHtpyJy
3 2 simp2bi xphJyyIICnJ
4 2 simp1bi xphJyxIICnJ
5 2 simp3bi xphJyxPHtpyJy
6 n0 xPHtpyJyffxPHtpyJy
7 5 6 sylib xphJyffxPHtpyJy
8 4 adantr xphJyfxPHtpyJyxIICnJ
9 3 adantr xphJyfxPHtpyJyyIICnJ
10 eqid u01,v01uf1v=u01,v01uf1v
11 simpr xphJyfxPHtpyJyfxPHtpyJy
12 8 9 10 11 phtpycom xphJyfxPHtpyJyu01,v01uf1vyPHtpyJx
13 12 ne0d xphJyfxPHtpyJyyPHtpyJx
14 7 13 exlimddv xphJyyPHtpyJx
15 isphtpc yphJxyIICnJxIICnJyPHtpyJx
16 3 4 14 15 syl3anbrc xphJyyphJx
17 4 adantr xphJyyphJzxIICnJ
18 simpr xphJyyphJzyphJz
19 isphtpc yphJzyIICnJzIICnJyPHtpyJz
20 18 19 sylib xphJyyphJzyIICnJzIICnJyPHtpyJz
21 20 simp2d xphJyyphJzzIICnJ
22 5 adantr xphJyyphJzxPHtpyJy
23 22 6 sylib xphJyyphJzffxPHtpyJy
24 20 simp3d xphJyyphJzyPHtpyJz
25 n0 yPHtpyJzggyPHtpyJz
26 24 25 sylib xphJyyphJzggyPHtpyJz
27 exdistrv fgfxPHtpyJygyPHtpyJzffxPHtpyJyggyPHtpyJz
28 23 26 27 sylanbrc xphJyyphJzfgfxPHtpyJygyPHtpyJz
29 eqid u01,v01ifv12uf2vug2v1=u01,v01ifv12uf2vug2v1
30 17 adantr xphJyyphJzfxPHtpyJygyPHtpyJzxIICnJ
31 20 simp1d xphJyyphJzyIICnJ
32 31 adantr xphJyyphJzfxPHtpyJygyPHtpyJzyIICnJ
33 21 adantr xphJyyphJzfxPHtpyJygyPHtpyJzzIICnJ
34 simprl xphJyyphJzfxPHtpyJygyPHtpyJzfxPHtpyJy
35 simprr xphJyyphJzfxPHtpyJygyPHtpyJzgyPHtpyJz
36 29 30 32 33 34 35 phtpycc xphJyyphJzfxPHtpyJygyPHtpyJzu01,v01ifv12uf2vug2v1xPHtpyJz
37 36 ne0d xphJyyphJzfxPHtpyJygyPHtpyJzxPHtpyJz
38 37 ex xphJyyphJzfxPHtpyJygyPHtpyJzxPHtpyJz
39 38 exlimdvv xphJyyphJzfgfxPHtpyJygyPHtpyJzxPHtpyJz
40 28 39 mpd xphJyyphJzxPHtpyJz
41 isphtpc xphJzxIICnJzIICnJxPHtpyJz
42 17 21 40 41 syl3anbrc xphJyyphJzxphJz
43 eqid y01,z01xy=y01,z01xy
44 id xIICnJxIICnJ
45 43 44 phtpyid xIICnJy01,z01xyxPHtpyJx
46 45 ne0d xIICnJxPHtpyJx
47 46 ancli xIICnJxIICnJxPHtpyJx
48 47 pm4.71ri xIICnJxIICnJxPHtpyJxxIICnJ
49 df-3an xIICnJxPHtpyJxxIICnJxIICnJxPHtpyJxxIICnJ
50 3ancomb xIICnJxPHtpyJxxIICnJxIICnJxIICnJxPHtpyJx
51 48 49 50 3bitr2i xIICnJxIICnJxIICnJxPHtpyJx
52 isphtpc xphJxxIICnJxIICnJxPHtpyJx
53 51 52 bitr4i xIICnJxphJx
54 1 16 42 53 iseri phJErIICnJ