Description: Path homotopy is an equivalence relation. Proposition 1.2 of Hatcher p. 26. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 6-Jul-2015) (Proof shortened by AV, 1-May-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | phtpcer | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phtpcrel | |
|
2 | isphtpc | |
|
3 | 2 | simp2bi | |
4 | 2 | simp1bi | |
5 | 2 | simp3bi | |
6 | n0 | |
|
7 | 5 6 | sylib | |
8 | 4 | adantr | |
9 | 3 | adantr | |
10 | eqid | |
|
11 | simpr | |
|
12 | 8 9 10 11 | phtpycom | |
13 | 12 | ne0d | |
14 | 7 13 | exlimddv | |
15 | isphtpc | |
|
16 | 3 4 14 15 | syl3anbrc | |
17 | 4 | adantr | |
18 | simpr | |
|
19 | isphtpc | |
|
20 | 18 19 | sylib | |
21 | 20 | simp2d | |
22 | 5 | adantr | |
23 | 22 6 | sylib | |
24 | 20 | simp3d | |
25 | n0 | |
|
26 | 24 25 | sylib | |
27 | exdistrv | |
|
28 | 23 26 27 | sylanbrc | |
29 | eqid | |
|
30 | 17 | adantr | |
31 | 20 | simp1d | |
32 | 31 | adantr | |
33 | 21 | adantr | |
34 | simprl | |
|
35 | simprr | |
|
36 | 29 30 32 33 34 35 | phtpycc | |
37 | 36 | ne0d | |
38 | 37 | ex | |
39 | 38 | exlimdvv | |
40 | 28 39 | mpd | |
41 | isphtpc | |
|
42 | 17 21 40 41 | syl3anbrc | |
43 | eqid | |
|
44 | id | |
|
45 | 43 44 | phtpyid | |
46 | 45 | ne0d | |
47 | 46 | ancli | |
48 | 47 | pm4.71ri | |
49 | df-3an | |
|
50 | 3ancomb | |
|
51 | 48 49 50 | 3bitr2i | |
52 | isphtpc | |
|
53 | 51 52 | bitr4i | |
54 | 1 16 42 53 | iseri | |