Metamath Proof Explorer


Theorem phtpc01

Description: Path homotopic paths have the same endpoints. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Assertion phtpc01 FphJGF0=G0F1=G1

Proof

Step Hyp Ref Expression
1 isphtpc FphJGFIICnJGIICnJFPHtpyJG
2 n0 FPHtpyJGhhFPHtpyJG
3 simpll FIICnJGIICnJhFPHtpyJGFIICnJ
4 simplr FIICnJGIICnJhFPHtpyJGGIICnJ
5 simpr FIICnJGIICnJhFPHtpyJGhFPHtpyJG
6 3 4 5 phtpy01 FIICnJGIICnJhFPHtpyJGF0=G0F1=G1
7 6 ex FIICnJGIICnJhFPHtpyJGF0=G0F1=G1
8 7 exlimdv FIICnJGIICnJhhFPHtpyJGF0=G0F1=G1
9 2 8 biimtrid FIICnJGIICnJFPHtpyJGF0=G0F1=G1
10 9 3impia FIICnJGIICnJFPHtpyJGF0=G0F1=G1
11 1 10 sylbi FphJGF0=G0F1=G1