Step |
Hyp |
Ref |
Expression |
1 |
|
reparpht.2 |
|
2 |
|
reparpht.3 |
|
3 |
|
reparpht.4 |
|
4 |
|
reparpht.5 |
|
5 |
|
reparphti.6 |
|
6 |
|
cnco |
|
7 |
2 1 6
|
syl2anc |
|
8 |
|
iitopon |
|
9 |
8
|
a1i |
|
10 |
|
eqid |
|
11 |
10
|
cnfldtop |
|
12 |
|
cnrest2r |
|
13 |
11 12
|
mp1i |
|
14 |
9 9
|
cnmpt2nd |
|
15 |
|
iirevcn |
|
16 |
15
|
a1i |
|
17 |
|
oveq2 |
|
18 |
9 9 14 9 16 17
|
cnmpt21 |
|
19 |
10
|
dfii3 |
|
20 |
19
|
oveq2i |
|
21 |
18 20
|
eleqtrdi |
|
22 |
13 21
|
sseldd |
|
23 |
9 9
|
cnmpt1st |
|
24 |
9 9 23 2
|
cnmpt21f |
|
25 |
24 20
|
eleqtrdi |
|
26 |
13 25
|
sseldd |
|
27 |
10
|
mulcn |
|
28 |
27
|
a1i |
|
29 |
9 9 22 26 28
|
cnmpt22f |
|
30 |
14 20
|
eleqtrdi |
|
31 |
13 30
|
sseldd |
|
32 |
23 20
|
eleqtrdi |
|
33 |
13 32
|
sseldd |
|
34 |
9 9 31 33 28
|
cnmpt22f |
|
35 |
10
|
addcn |
|
36 |
35
|
a1i |
|
37 |
9 9 29 34 36
|
cnmpt22f |
|
38 |
10
|
cnfldtopon |
|
39 |
38
|
a1i |
|
40 |
|
iiuni |
|
41 |
40 40
|
cnf |
|
42 |
2 41
|
syl |
|
43 |
42
|
ffvelrnda |
|
44 |
43
|
adantrr |
|
45 |
|
simprl |
|
46 |
|
simprr |
|
47 |
|
0re |
|
48 |
|
1re |
|
49 |
|
icccvx |
|
50 |
47 48 49
|
mp2an |
|
51 |
44 45 46 50
|
syl3anc |
|
52 |
51
|
ralrimivva |
|
53 |
|
eqid |
|
54 |
53
|
fmpo |
|
55 |
52 54
|
sylib |
|
56 |
55
|
frnd |
|
57 |
|
unitssre |
|
58 |
|
ax-resscn |
|
59 |
57 58
|
sstri |
|
60 |
59
|
a1i |
|
61 |
|
cnrest2 |
|
62 |
39 56 60 61
|
syl3anc |
|
63 |
37 62
|
mpbid |
|
64 |
63 20
|
eleqtrrdi |
|
65 |
9 9 64 1
|
cnmpt21f |
|
66 |
5 65
|
eqeltrid |
|
67 |
42
|
ffvelrnda |
|
68 |
59 67
|
sselid |
|
69 |
68
|
mulid2d |
|
70 |
59
|
sseli |
|
71 |
70
|
adantl |
|
72 |
71
|
mul02d |
|
73 |
69 72
|
oveq12d |
|
74 |
68
|
addid1d |
|
75 |
73 74
|
eqtrd |
|
76 |
75
|
fveq2d |
|
77 |
|
simpr |
|
78 |
|
0elunit |
|
79 |
|
simpr |
|
80 |
79
|
oveq2d |
|
81 |
|
1m0e1 |
|
82 |
80 81
|
eqtrdi |
|
83 |
|
simpl |
|
84 |
83
|
fveq2d |
|
85 |
82 84
|
oveq12d |
|
86 |
79 83
|
oveq12d |
|
87 |
85 86
|
oveq12d |
|
88 |
87
|
fveq2d |
|
89 |
|
fvex |
|
90 |
88 5 89
|
ovmpoa |
|
91 |
77 78 90
|
sylancl |
|
92 |
|
fvco3 |
|
93 |
42 92
|
sylan |
|
94 |
76 91 93
|
3eqtr4d |
|
95 |
|
1elunit |
|
96 |
|
simpr |
|
97 |
96
|
oveq2d |
|
98 |
|
1m1e0 |
|
99 |
97 98
|
eqtrdi |
|
100 |
|
simpl |
|
101 |
100
|
fveq2d |
|
102 |
99 101
|
oveq12d |
|
103 |
96 100
|
oveq12d |
|
104 |
102 103
|
oveq12d |
|
105 |
104
|
fveq2d |
|
106 |
|
fvex |
|
107 |
105 5 106
|
ovmpoa |
|
108 |
77 95 107
|
sylancl |
|
109 |
68
|
mul02d |
|
110 |
71
|
mulid2d |
|
111 |
109 110
|
oveq12d |
|
112 |
71
|
addid2d |
|
113 |
111 112
|
eqtrd |
|
114 |
113
|
fveq2d |
|
115 |
108 114
|
eqtrd |
|
116 |
3
|
adantr |
|
117 |
116
|
oveq2d |
|
118 |
|
ax-1cn |
|
119 |
|
subcl |
|
120 |
118 71 119
|
sylancr |
|
121 |
120
|
mul01d |
|
122 |
117 121
|
eqtrd |
|
123 |
71
|
mul01d |
|
124 |
122 123
|
oveq12d |
|
125 |
|
00id |
|
126 |
124 125
|
eqtrdi |
|
127 |
126
|
fveq2d |
|
128 |
|
simpr |
|
129 |
128
|
oveq2d |
|
130 |
|
simpl |
|
131 |
130
|
fveq2d |
|
132 |
129 131
|
oveq12d |
|
133 |
128 130
|
oveq12d |
|
134 |
132 133
|
oveq12d |
|
135 |
134
|
fveq2d |
|
136 |
|
fvex |
|
137 |
135 5 136
|
ovmpoa |
|
138 |
78 77 137
|
sylancr |
|
139 |
|
fvco3 |
|
140 |
42 78 139
|
sylancl |
|
141 |
3
|
fveq2d |
|
142 |
140 141
|
eqtrd |
|
143 |
142
|
adantr |
|
144 |
127 138 143
|
3eqtr4d |
|
145 |
4
|
adantr |
|
146 |
145
|
oveq2d |
|
147 |
120
|
mulid1d |
|
148 |
146 147
|
eqtrd |
|
149 |
71
|
mulid1d |
|
150 |
148 149
|
oveq12d |
|
151 |
|
npcan |
|
152 |
118 71 151
|
sylancr |
|
153 |
150 152
|
eqtrd |
|
154 |
153
|
fveq2d |
|
155 |
|
simpr |
|
156 |
155
|
oveq2d |
|
157 |
|
simpl |
|
158 |
157
|
fveq2d |
|
159 |
156 158
|
oveq12d |
|
160 |
155 157
|
oveq12d |
|
161 |
159 160
|
oveq12d |
|
162 |
161
|
fveq2d |
|
163 |
|
fvex |
|
164 |
162 5 163
|
ovmpoa |
|
165 |
95 77 164
|
sylancr |
|
166 |
|
fvco3 |
|
167 |
42 95 166
|
sylancl |
|
168 |
4
|
fveq2d |
|
169 |
167 168
|
eqtrd |
|
170 |
169
|
adantr |
|
171 |
154 165 170
|
3eqtr4d |
|
172 |
7 1 66 94 115 144 171
|
isphtpy2d |
|