Metamath Proof Explorer


Theorem reparphti

Description: Lemma for reparpht . (Contributed by NM, 15-Jun-2010) (Revised by Mario Carneiro, 7-Jun-2014)

Ref Expression
Hypotheses reparpht.2 φ F II Cn J
reparpht.3 φ G II Cn II
reparpht.4 φ G 0 = 0
reparpht.5 φ G 1 = 1
reparphti.6 H = x 0 1 , y 0 1 F 1 y G x + y x
Assertion reparphti φ H F G PHtpy J F

Proof

Step Hyp Ref Expression
1 reparpht.2 φ F II Cn J
2 reparpht.3 φ G II Cn II
3 reparpht.4 φ G 0 = 0
4 reparpht.5 φ G 1 = 1
5 reparphti.6 H = x 0 1 , y 0 1 F 1 y G x + y x
6 cnco G II Cn II F II Cn J F G II Cn J
7 2 1 6 syl2anc φ F G II Cn J
8 iitopon II TopOn 0 1
9 8 a1i φ II TopOn 0 1
10 eqid TopOpen fld = TopOpen fld
11 10 cnfldtop TopOpen fld Top
12 cnrest2r TopOpen fld Top II × t II Cn TopOpen fld 𝑡 0 1 II × t II Cn TopOpen fld
13 11 12 mp1i φ II × t II Cn TopOpen fld 𝑡 0 1 II × t II Cn TopOpen fld
14 9 9 cnmpt2nd φ x 0 1 , y 0 1 y II × t II Cn II
15 iirevcn z 0 1 1 z II Cn II
16 15 a1i φ z 0 1 1 z II Cn II
17 oveq2 z = y 1 z = 1 y
18 9 9 14 9 16 17 cnmpt21 φ x 0 1 , y 0 1 1 y II × t II Cn II
19 10 dfii3 II = TopOpen fld 𝑡 0 1
20 19 oveq2i II × t II Cn II = II × t II Cn TopOpen fld 𝑡 0 1
21 18 20 eleqtrdi φ x 0 1 , y 0 1 1 y II × t II Cn TopOpen fld 𝑡 0 1
22 13 21 sseldd φ x 0 1 , y 0 1 1 y II × t II Cn TopOpen fld
23 9 9 cnmpt1st φ x 0 1 , y 0 1 x II × t II Cn II
24 9 9 23 2 cnmpt21f φ x 0 1 , y 0 1 G x II × t II Cn II
25 24 20 eleqtrdi φ x 0 1 , y 0 1 G x II × t II Cn TopOpen fld 𝑡 0 1
26 13 25 sseldd φ x 0 1 , y 0 1 G x II × t II Cn TopOpen fld
27 10 mulcn × TopOpen fld × t TopOpen fld Cn TopOpen fld
28 27 a1i φ × TopOpen fld × t TopOpen fld Cn TopOpen fld
29 9 9 22 26 28 cnmpt22f φ x 0 1 , y 0 1 1 y G x II × t II Cn TopOpen fld
30 14 20 eleqtrdi φ x 0 1 , y 0 1 y II × t II Cn TopOpen fld 𝑡 0 1
31 13 30 sseldd φ x 0 1 , y 0 1 y II × t II Cn TopOpen fld
32 23 20 eleqtrdi φ x 0 1 , y 0 1 x II × t II Cn TopOpen fld 𝑡 0 1
33 13 32 sseldd φ x 0 1 , y 0 1 x II × t II Cn TopOpen fld
34 9 9 31 33 28 cnmpt22f φ x 0 1 , y 0 1 y x II × t II Cn TopOpen fld
35 10 addcn + TopOpen fld × t TopOpen fld Cn TopOpen fld
36 35 a1i φ + TopOpen fld × t TopOpen fld Cn TopOpen fld
37 9 9 29 34 36 cnmpt22f φ x 0 1 , y 0 1 1 y G x + y x II × t II Cn TopOpen fld
38 10 cnfldtopon TopOpen fld TopOn
39 38 a1i φ TopOpen fld TopOn
40 iiuni 0 1 = II
41 40 40 cnf G II Cn II G : 0 1 0 1
42 2 41 syl φ G : 0 1 0 1
43 42 ffvelrnda φ x 0 1 G x 0 1
44 43 adantrr φ x 0 1 y 0 1 G x 0 1
45 simprl φ x 0 1 y 0 1 x 0 1
46 simprr φ x 0 1 y 0 1 y 0 1
47 0re 0
48 1re 1
49 icccvx 0 1 G x 0 1 x 0 1 y 0 1 1 y G x + y x 0 1
50 47 48 49 mp2an G x 0 1 x 0 1 y 0 1 1 y G x + y x 0 1
51 44 45 46 50 syl3anc φ x 0 1 y 0 1 1 y G x + y x 0 1
52 51 ralrimivva φ x 0 1 y 0 1 1 y G x + y x 0 1
53 eqid x 0 1 , y 0 1 1 y G x + y x = x 0 1 , y 0 1 1 y G x + y x
54 53 fmpo x 0 1 y 0 1 1 y G x + y x 0 1 x 0 1 , y 0 1 1 y G x + y x : 0 1 × 0 1 0 1
55 52 54 sylib φ x 0 1 , y 0 1 1 y G x + y x : 0 1 × 0 1 0 1
56 55 frnd φ ran x 0 1 , y 0 1 1 y G x + y x 0 1
57 unitssre 0 1
58 ax-resscn
59 57 58 sstri 0 1
60 59 a1i φ 0 1
61 cnrest2 TopOpen fld TopOn ran x 0 1 , y 0 1 1 y G x + y x 0 1 0 1 x 0 1 , y 0 1 1 y G x + y x II × t II Cn TopOpen fld x 0 1 , y 0 1 1 y G x + y x II × t II Cn TopOpen fld 𝑡 0 1
62 39 56 60 61 syl3anc φ x 0 1 , y 0 1 1 y G x + y x II × t II Cn TopOpen fld x 0 1 , y 0 1 1 y G x + y x II × t II Cn TopOpen fld 𝑡 0 1
63 37 62 mpbid φ x 0 1 , y 0 1 1 y G x + y x II × t II Cn TopOpen fld 𝑡 0 1
64 63 20 eleqtrrdi φ x 0 1 , y 0 1 1 y G x + y x II × t II Cn II
65 9 9 64 1 cnmpt21f φ x 0 1 , y 0 1 F 1 y G x + y x II × t II Cn J
66 5 65 eqeltrid φ H II × t II Cn J
67 42 ffvelrnda φ s 0 1 G s 0 1
68 59 67 sselid φ s 0 1 G s
69 68 mulid2d φ s 0 1 1 G s = G s
70 59 sseli s 0 1 s
71 70 adantl φ s 0 1 s
72 71 mul02d φ s 0 1 0 s = 0
73 69 72 oveq12d φ s 0 1 1 G s + 0 s = G s + 0
74 68 addid1d φ s 0 1 G s + 0 = G s
75 73 74 eqtrd φ s 0 1 1 G s + 0 s = G s
76 75 fveq2d φ s 0 1 F 1 G s + 0 s = F G s
77 simpr φ s 0 1 s 0 1
78 0elunit 0 0 1
79 simpr x = s y = 0 y = 0
80 79 oveq2d x = s y = 0 1 y = 1 0
81 1m0e1 1 0 = 1
82 80 81 eqtrdi x = s y = 0 1 y = 1
83 simpl x = s y = 0 x = s
84 83 fveq2d x = s y = 0 G x = G s
85 82 84 oveq12d x = s y = 0 1 y G x = 1 G s
86 79 83 oveq12d x = s y = 0 y x = 0 s
87 85 86 oveq12d x = s y = 0 1 y G x + y x = 1 G s + 0 s
88 87 fveq2d x = s y = 0 F 1 y G x + y x = F 1 G s + 0 s
89 fvex F 1 G s + 0 s V
90 88 5 89 ovmpoa s 0 1 0 0 1 s H 0 = F 1 G s + 0 s
91 77 78 90 sylancl φ s 0 1 s H 0 = F 1 G s + 0 s
92 fvco3 G : 0 1 0 1 s 0 1 F G s = F G s
93 42 92 sylan φ s 0 1 F G s = F G s
94 76 91 93 3eqtr4d φ s 0 1 s H 0 = F G s
95 1elunit 1 0 1
96 simpr x = s y = 1 y = 1
97 96 oveq2d x = s y = 1 1 y = 1 1
98 1m1e0 1 1 = 0
99 97 98 eqtrdi x = s y = 1 1 y = 0
100 simpl x = s y = 1 x = s
101 100 fveq2d x = s y = 1 G x = G s
102 99 101 oveq12d x = s y = 1 1 y G x = 0 G s
103 96 100 oveq12d x = s y = 1 y x = 1 s
104 102 103 oveq12d x = s y = 1 1 y G x + y x = 0 G s + 1 s
105 104 fveq2d x = s y = 1 F 1 y G x + y x = F 0 G s + 1 s
106 fvex F 0 G s + 1 s V
107 105 5 106 ovmpoa s 0 1 1 0 1 s H 1 = F 0 G s + 1 s
108 77 95 107 sylancl φ s 0 1 s H 1 = F 0 G s + 1 s
109 68 mul02d φ s 0 1 0 G s = 0
110 71 mulid2d φ s 0 1 1 s = s
111 109 110 oveq12d φ s 0 1 0 G s + 1 s = 0 + s
112 71 addid2d φ s 0 1 0 + s = s
113 111 112 eqtrd φ s 0 1 0 G s + 1 s = s
114 113 fveq2d φ s 0 1 F 0 G s + 1 s = F s
115 108 114 eqtrd φ s 0 1 s H 1 = F s
116 3 adantr φ s 0 1 G 0 = 0
117 116 oveq2d φ s 0 1 1 s G 0 = 1 s 0
118 ax-1cn 1
119 subcl 1 s 1 s
120 118 71 119 sylancr φ s 0 1 1 s
121 120 mul01d φ s 0 1 1 s 0 = 0
122 117 121 eqtrd φ s 0 1 1 s G 0 = 0
123 71 mul01d φ s 0 1 s 0 = 0
124 122 123 oveq12d φ s 0 1 1 s G 0 + s 0 = 0 + 0
125 00id 0 + 0 = 0
126 124 125 eqtrdi φ s 0 1 1 s G 0 + s 0 = 0
127 126 fveq2d φ s 0 1 F 1 s G 0 + s 0 = F 0
128 simpr x = 0 y = s y = s
129 128 oveq2d x = 0 y = s 1 y = 1 s
130 simpl x = 0 y = s x = 0
131 130 fveq2d x = 0 y = s G x = G 0
132 129 131 oveq12d x = 0 y = s 1 y G x = 1 s G 0
133 128 130 oveq12d x = 0 y = s y x = s 0
134 132 133 oveq12d x = 0 y = s 1 y G x + y x = 1 s G 0 + s 0
135 134 fveq2d x = 0 y = s F 1 y G x + y x = F 1 s G 0 + s 0
136 fvex F 1 s G 0 + s 0 V
137 135 5 136 ovmpoa 0 0 1 s 0 1 0 H s = F 1 s G 0 + s 0
138 78 77 137 sylancr φ s 0 1 0 H s = F 1 s G 0 + s 0
139 fvco3 G : 0 1 0 1 0 0 1 F G 0 = F G 0
140 42 78 139 sylancl φ F G 0 = F G 0
141 3 fveq2d φ F G 0 = F 0
142 140 141 eqtrd φ F G 0 = F 0
143 142 adantr φ s 0 1 F G 0 = F 0
144 127 138 143 3eqtr4d φ s 0 1 0 H s = F G 0
145 4 adantr φ s 0 1 G 1 = 1
146 145 oveq2d φ s 0 1 1 s G 1 = 1 s 1
147 120 mulid1d φ s 0 1 1 s 1 = 1 s
148 146 147 eqtrd φ s 0 1 1 s G 1 = 1 s
149 71 mulid1d φ s 0 1 s 1 = s
150 148 149 oveq12d φ s 0 1 1 s G 1 + s 1 = 1 - s + s
151 npcan 1 s 1 - s + s = 1
152 118 71 151 sylancr φ s 0 1 1 - s + s = 1
153 150 152 eqtrd φ s 0 1 1 s G 1 + s 1 = 1
154 153 fveq2d φ s 0 1 F 1 s G 1 + s 1 = F 1
155 simpr x = 1 y = s y = s
156 155 oveq2d x = 1 y = s 1 y = 1 s
157 simpl x = 1 y = s x = 1
158 157 fveq2d x = 1 y = s G x = G 1
159 156 158 oveq12d x = 1 y = s 1 y G x = 1 s G 1
160 155 157 oveq12d x = 1 y = s y x = s 1
161 159 160 oveq12d x = 1 y = s 1 y G x + y x = 1 s G 1 + s 1
162 161 fveq2d x = 1 y = s F 1 y G x + y x = F 1 s G 1 + s 1
163 fvex F 1 s G 1 + s 1 V
164 162 5 163 ovmpoa 1 0 1 s 0 1 1 H s = F 1 s G 1 + s 1
165 95 77 164 sylancr φ s 0 1 1 H s = F 1 s G 1 + s 1
166 fvco3 G : 0 1 0 1 1 0 1 F G 1 = F G 1
167 42 95 166 sylancl φ F G 1 = F G 1
168 4 fveq2d φ F G 1 = F 1
169 167 168 eqtrd φ F G 1 = F 1
170 169 adantr φ s 0 1 F G 1 = F 1
171 154 165 170 3eqtr4d φ s 0 1 1 H s = F G 1
172 7 1 66 94 115 144 171 isphtpy2d φ H F G PHtpy J F