Step |
Hyp |
Ref |
Expression |
1 |
|
reparpht.2 |
⊢ ( 𝜑 → 𝐹 ∈ ( II Cn 𝐽 ) ) |
2 |
|
reparpht.3 |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn II ) ) |
3 |
|
reparpht.4 |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = 0 ) |
4 |
|
reparpht.5 |
⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) = 1 ) |
5 |
|
reparphti.6 |
⊢ 𝐻 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ) |
6 |
|
cnco |
⊢ ( ( 𝐺 ∈ ( II Cn II ) ∧ 𝐹 ∈ ( II Cn 𝐽 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( II Cn 𝐽 ) ) |
7 |
2 1 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) ∈ ( II Cn 𝐽 ) ) |
8 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
9 |
8
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
10 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
11 |
10
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
12 |
|
cnrest2r |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ Top → ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) ⊆ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ) |
13 |
11 12
|
mp1i |
⊢ ( 𝜑 → ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) ⊆ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ) |
14 |
9 9
|
cnmpt2nd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑦 ) ∈ ( ( II ×t II ) Cn II ) ) |
15 |
|
iirevcn |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑧 ) ) ∈ ( II Cn II ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑧 ) ) ∈ ( II Cn II ) ) |
17 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 1 − 𝑧 ) = ( 1 − 𝑦 ) ) |
18 |
9 9 14 9 16 17
|
cnmpt21 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑦 ) ) ∈ ( ( II ×t II ) Cn II ) ) |
19 |
10
|
dfii3 |
⊢ II = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) |
20 |
19
|
oveq2i |
⊢ ( ( II ×t II ) Cn II ) = ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) |
21 |
18 20
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑦 ) ) ∈ ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) ) |
22 |
13 21
|
sseldd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑦 ) ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ) |
23 |
9 9
|
cnmpt1st |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( II ×t II ) Cn II ) ) |
24 |
9 9 23 2
|
cnmpt21f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ ( ( II ×t II ) Cn II ) ) |
25 |
24 20
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) ) |
26 |
13 25
|
sseldd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ) |
27 |
10
|
mulcn |
⊢ · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
28 |
27
|
a1i |
⊢ ( 𝜑 → · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
29 |
9 9 22 26 28
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ) |
30 |
14 20
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑦 ) ∈ ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) ) |
31 |
13 30
|
sseldd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑦 ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ) |
32 |
23 20
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) ) |
33 |
13 32
|
sseldd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ 𝑥 ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ) |
34 |
9 9 31 33 28
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝑦 · 𝑥 ) ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ) |
35 |
10
|
addcn |
⊢ + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
36 |
35
|
a1i |
⊢ ( 𝜑 → + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
37 |
9 9 29 34 36
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ) |
38 |
10
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
39 |
38
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ) |
40 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
41 |
40 40
|
cnf |
⊢ ( 𝐺 ∈ ( II Cn II ) → 𝐺 : ( 0 [,] 1 ) ⟶ ( 0 [,] 1 ) ) |
42 |
2 41
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 0 [,] 1 ) ⟶ ( 0 [,] 1 ) ) |
43 |
42
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] 1 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 0 [,] 1 ) ) |
44 |
43
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 0 [,] 1 ) ) |
45 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → 𝑥 ∈ ( 0 [,] 1 ) ) |
46 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → 𝑦 ∈ ( 0 [,] 1 ) ) |
47 |
|
0re |
⊢ 0 ∈ ℝ |
48 |
|
1re |
⊢ 1 ∈ ℝ |
49 |
|
icccvx |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑥 ) ∈ ( 0 [,] 1 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ∈ ( 0 [,] 1 ) ) ) |
50 |
47 48 49
|
mp2an |
⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ ( 0 [,] 1 ) ∧ 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ∈ ( 0 [,] 1 ) ) |
51 |
44 45 46 50
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ∈ ( 0 [,] 1 ) ) |
52 |
51
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 [,] 1 ) ∀ 𝑦 ∈ ( 0 [,] 1 ) ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ∈ ( 0 [,] 1 ) ) |
53 |
|
eqid |
⊢ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) |
54 |
53
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∀ 𝑦 ∈ ( 0 [,] 1 ) ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ∈ ( 0 [,] 1 ) ↔ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ( 0 [,] 1 ) ) |
55 |
52 54
|
sylib |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ ( 0 [,] 1 ) ) |
56 |
55
|
frnd |
⊢ ( 𝜑 → ran ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ⊆ ( 0 [,] 1 ) ) |
57 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
58 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
59 |
57 58
|
sstri |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
60 |
59
|
a1i |
⊢ ( 𝜑 → ( 0 [,] 1 ) ⊆ ℂ ) |
61 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ∈ ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) ) ) |
62 |
39 56 60 61
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ∈ ( ( II ×t II ) Cn ( TopOpen ‘ ℂfld ) ) ↔ ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ∈ ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) ) ) |
63 |
37 62
|
mpbid |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ∈ ( ( II ×t II ) Cn ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) ) ) |
64 |
63 20
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ∈ ( ( II ×t II ) Cn II ) ) |
65 |
9 9 64 1
|
cnmpt21f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
66 |
5 65
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
67 |
42
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐺 ‘ 𝑠 ) ∈ ( 0 [,] 1 ) ) |
68 |
59 67
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐺 ‘ 𝑠 ) ∈ ℂ ) |
69 |
68
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 · ( 𝐺 ‘ 𝑠 ) ) = ( 𝐺 ‘ 𝑠 ) ) |
70 |
59
|
sseli |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → 𝑠 ∈ ℂ ) |
71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ℂ ) |
72 |
71
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 · 𝑠 ) = 0 ) |
73 |
69 72
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 · ( 𝐺 ‘ 𝑠 ) ) + ( 0 · 𝑠 ) ) = ( ( 𝐺 ‘ 𝑠 ) + 0 ) ) |
74 |
68
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐺 ‘ 𝑠 ) + 0 ) = ( 𝐺 ‘ 𝑠 ) ) |
75 |
73 74
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 · ( 𝐺 ‘ 𝑠 ) ) + ( 0 · 𝑠 ) ) = ( 𝐺 ‘ 𝑠 ) ) |
76 |
75
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( ( 1 · ( 𝐺 ‘ 𝑠 ) ) + ( 0 · 𝑠 ) ) ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑠 ) ) ) |
77 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ( 0 [,] 1 ) ) |
78 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
79 |
|
simpr |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → 𝑦 = 0 ) |
80 |
79
|
oveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 1 − 𝑦 ) = ( 1 − 0 ) ) |
81 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
82 |
80 81
|
eqtrdi |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 1 − 𝑦 ) = 1 ) |
83 |
|
simpl |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → 𝑥 = 𝑠 ) |
84 |
83
|
fveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑠 ) ) |
85 |
82 84
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) = ( 1 · ( 𝐺 ‘ 𝑠 ) ) ) |
86 |
79 83
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 𝑦 · 𝑥 ) = ( 0 · 𝑠 ) ) |
87 |
85 86
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) = ( ( 1 · ( 𝐺 ‘ 𝑠 ) ) + ( 0 · 𝑠 ) ) ) |
88 |
87
|
fveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 0 ) → ( 𝐹 ‘ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) = ( 𝐹 ‘ ( ( 1 · ( 𝐺 ‘ 𝑠 ) ) + ( 0 · 𝑠 ) ) ) ) |
89 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( 1 · ( 𝐺 ‘ 𝑠 ) ) + ( 0 · 𝑠 ) ) ) ∈ V |
90 |
88 5 89
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ ( ( 1 · ( 𝐺 ‘ 𝑠 ) ) + ( 0 · 𝑠 ) ) ) ) |
91 |
77 78 90
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 0 ) = ( 𝐹 ‘ ( ( 1 · ( 𝐺 ‘ 𝑠 ) ) + ( 0 · 𝑠 ) ) ) ) |
92 |
|
fvco3 |
⊢ ( ( 𝐺 : ( 0 [,] 1 ) ⟶ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑠 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑠 ) ) ) |
93 |
42 92
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑠 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑠 ) ) ) |
94 |
76 91 93
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 0 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑠 ) ) |
95 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
96 |
|
simpr |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → 𝑦 = 1 ) |
97 |
96
|
oveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 1 − 𝑦 ) = ( 1 − 1 ) ) |
98 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
99 |
97 98
|
eqtrdi |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 1 − 𝑦 ) = 0 ) |
100 |
|
simpl |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → 𝑥 = 𝑠 ) |
101 |
100
|
fveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑠 ) ) |
102 |
99 101
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) = ( 0 · ( 𝐺 ‘ 𝑠 ) ) ) |
103 |
96 100
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 𝑦 · 𝑥 ) = ( 1 · 𝑠 ) ) |
104 |
102 103
|
oveq12d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) = ( ( 0 · ( 𝐺 ‘ 𝑠 ) ) + ( 1 · 𝑠 ) ) ) |
105 |
104
|
fveq2d |
⊢ ( ( 𝑥 = 𝑠 ∧ 𝑦 = 1 ) → ( 𝐹 ‘ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) = ( 𝐹 ‘ ( ( 0 · ( 𝐺 ‘ 𝑠 ) ) + ( 1 · 𝑠 ) ) ) ) |
106 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( 0 · ( 𝐺 ‘ 𝑠 ) ) + ( 1 · 𝑠 ) ) ) ∈ V |
107 |
105 5 106
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 1 ) = ( 𝐹 ‘ ( ( 0 · ( 𝐺 ‘ 𝑠 ) ) + ( 1 · 𝑠 ) ) ) ) |
108 |
77 95 107
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 1 ) = ( 𝐹 ‘ ( ( 0 · ( 𝐺 ‘ 𝑠 ) ) + ( 1 · 𝑠 ) ) ) ) |
109 |
68
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 · ( 𝐺 ‘ 𝑠 ) ) = 0 ) |
110 |
71
|
mulid2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 · 𝑠 ) = 𝑠 ) |
111 |
109 110
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 · ( 𝐺 ‘ 𝑠 ) ) + ( 1 · 𝑠 ) ) = ( 0 + 𝑠 ) ) |
112 |
71
|
addid2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 + 𝑠 ) = 𝑠 ) |
113 |
111 112
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 · ( 𝐺 ‘ 𝑠 ) ) + ( 1 · 𝑠 ) ) = 𝑠 ) |
114 |
113
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( ( 0 · ( 𝐺 ‘ 𝑠 ) ) + ( 1 · 𝑠 ) ) ) = ( 𝐹 ‘ 𝑠 ) ) |
115 |
108 114
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐻 1 ) = ( 𝐹 ‘ 𝑠 ) ) |
116 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐺 ‘ 0 ) = 0 ) |
117 |
116
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 0 ) ) = ( ( 1 − 𝑠 ) · 0 ) ) |
118 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
119 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑠 ∈ ℂ ) → ( 1 − 𝑠 ) ∈ ℂ ) |
120 |
118 71 119
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑠 ) ∈ ℂ ) |
121 |
120
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑠 ) · 0 ) = 0 ) |
122 |
117 121
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 0 ) ) = 0 ) |
123 |
71
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 · 0 ) = 0 ) |
124 |
122 123
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 0 ) ) + ( 𝑠 · 0 ) ) = ( 0 + 0 ) ) |
125 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
126 |
124 125
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 0 ) ) + ( 𝑠 · 0 ) ) = 0 ) |
127 |
126
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 0 ) ) + ( 𝑠 · 0 ) ) ) = ( 𝐹 ‘ 0 ) ) |
128 |
|
simpr |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → 𝑦 = 𝑠 ) |
129 |
128
|
oveq2d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 1 − 𝑦 ) = ( 1 − 𝑠 ) ) |
130 |
|
simpl |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → 𝑥 = 0 ) |
131 |
130
|
fveq2d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 0 ) ) |
132 |
129 131
|
oveq12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) = ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 0 ) ) ) |
133 |
128 130
|
oveq12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 𝑦 · 𝑥 ) = ( 𝑠 · 0 ) ) |
134 |
132 133
|
oveq12d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) = ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 0 ) ) + ( 𝑠 · 0 ) ) ) |
135 |
134
|
fveq2d |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 𝑠 ) → ( 𝐹 ‘ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) = ( 𝐹 ‘ ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 0 ) ) + ( 𝑠 · 0 ) ) ) ) |
136 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 0 ) ) + ( 𝑠 · 0 ) ) ) ∈ V |
137 |
135 5 136
|
ovmpoa |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 0 ) ) + ( 𝑠 · 0 ) ) ) ) |
138 |
78 77 137
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑠 ) = ( 𝐹 ‘ ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 0 ) ) + ( 𝑠 · 0 ) ) ) ) |
139 |
|
fvco3 |
⊢ ( ( 𝐺 : ( 0 [,] 1 ) ⟶ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) ) |
140 |
42 78 139
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) ) |
141 |
3
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 0 ) ) = ( 𝐹 ‘ 0 ) ) |
142 |
140 141
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
143 |
142
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 0 ) = ( 𝐹 ‘ 0 ) ) |
144 |
127 138 143
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐻 𝑠 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 0 ) ) |
145 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐺 ‘ 1 ) = 1 ) |
146 |
145
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 1 ) ) = ( ( 1 − 𝑠 ) · 1 ) ) |
147 |
120
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑠 ) · 1 ) = ( 1 − 𝑠 ) ) |
148 |
146 147
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 1 ) ) = ( 1 − 𝑠 ) ) |
149 |
71
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 · 1 ) = 𝑠 ) |
150 |
148 149
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 1 ) ) + ( 𝑠 · 1 ) ) = ( ( 1 − 𝑠 ) + 𝑠 ) ) |
151 |
|
npcan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑠 ∈ ℂ ) → ( ( 1 − 𝑠 ) + 𝑠 ) = 1 ) |
152 |
118 71 151
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑠 ) + 𝑠 ) = 1 ) |
153 |
150 152
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 1 ) ) + ( 𝑠 · 1 ) ) = 1 ) |
154 |
153
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 1 ) ) + ( 𝑠 · 1 ) ) ) = ( 𝐹 ‘ 1 ) ) |
155 |
|
simpr |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → 𝑦 = 𝑠 ) |
156 |
155
|
oveq2d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 1 − 𝑦 ) = ( 1 − 𝑠 ) ) |
157 |
|
simpl |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → 𝑥 = 1 ) |
158 |
157
|
fveq2d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 1 ) ) |
159 |
156 158
|
oveq12d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) = ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 1 ) ) ) |
160 |
155 157
|
oveq12d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 𝑦 · 𝑥 ) = ( 𝑠 · 1 ) ) |
161 |
159 160
|
oveq12d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) = ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 1 ) ) + ( 𝑠 · 1 ) ) ) |
162 |
161
|
fveq2d |
⊢ ( ( 𝑥 = 1 ∧ 𝑦 = 𝑠 ) → ( 𝐹 ‘ ( ( ( 1 − 𝑦 ) · ( 𝐺 ‘ 𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) = ( 𝐹 ‘ ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 1 ) ) + ( 𝑠 · 1 ) ) ) ) |
163 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 1 ) ) + ( 𝑠 · 1 ) ) ) ∈ V |
164 |
162 5 163
|
ovmpoa |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 1 ) ) + ( 𝑠 · 1 ) ) ) ) |
165 |
95 77 164
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑠 ) = ( 𝐹 ‘ ( ( ( 1 − 𝑠 ) · ( 𝐺 ‘ 1 ) ) + ( 𝑠 · 1 ) ) ) ) |
166 |
|
fvco3 |
⊢ ( ( 𝐺 : ( 0 [,] 1 ) ⟶ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) |
167 |
42 95 166
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) ) |
168 |
4
|
fveq2d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐺 ‘ 1 ) ) = ( 𝐹 ‘ 1 ) ) |
169 |
167 168
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐺 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
170 |
169
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 1 ) = ( 𝐹 ‘ 1 ) ) |
171 |
154 165 170
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐻 𝑠 ) = ( ( 𝐹 ∘ 𝐺 ) ‘ 1 ) ) |
172 |
7 1 66 94 115 144 171
|
isphtpy2d |
⊢ ( 𝜑 → 𝐻 ∈ ( ( 𝐹 ∘ 𝐺 ) ( PHtpy ‘ 𝐽 ) 𝐹 ) ) |