| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccss2 |
⊢ ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 3 |
2
|
3adantr3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 < 𝐷 ) → ( 𝐶 [,] 𝐷 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 5 |
|
iccssre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 6 |
5
|
sselda |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 7 |
6
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐶 ∈ ℝ ) |
| 8 |
5
|
sselda |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷 ∈ ℝ ) |
| 9 |
8
|
adantrl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → 𝐷 ∈ ℝ ) |
| 10 |
7 9
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) |
| 11 |
10
|
3adantr3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) |
| 12 |
|
simpr3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ( 0 [,] 1 ) ) |
| 13 |
11 12
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) |
| 14 |
|
lincmb01cmp |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 15 |
14
|
ex |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐶 < 𝐷 ) → ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) ) |
| 16 |
15
|
3expa |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝐶 < 𝐷 ) → ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) ) |
| 17 |
16
|
imp |
⊢ ( ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝐶 < 𝐷 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 18 |
17
|
an32s |
⊢ ( ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ∧ 𝐶 < 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 19 |
13 18
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 < 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐶 [,] 𝐷 ) ) |
| 20 |
4 19
|
sseldd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 < 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 21 |
|
oveq2 |
⊢ ( 𝐶 = 𝐷 → ( ( 1 − 𝑇 ) · 𝐶 ) = ( ( 1 − 𝑇 ) · 𝐷 ) ) |
| 22 |
21
|
oveq1d |
⊢ ( 𝐶 = 𝐷 → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) ) |
| 23 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
| 24 |
23
|
sseli |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → 𝑇 ∈ ℝ ) |
| 25 |
24
|
recnd |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → 𝑇 ∈ ℂ ) |
| 26 |
25
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝑇 ∈ ℂ ) |
| 27 |
8
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐷 ∈ ℂ ) |
| 28 |
27
|
adantrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → 𝐷 ∈ ℂ ) |
| 29 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 30 |
|
npcan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( ( 1 − 𝑇 ) + 𝑇 ) = 1 ) |
| 31 |
29 30
|
mpan |
⊢ ( 𝑇 ∈ ℂ → ( ( 1 − 𝑇 ) + 𝑇 ) = 1 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( 1 − 𝑇 ) + 𝑇 ) = 1 ) |
| 33 |
32
|
oveq1d |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) + 𝑇 ) · 𝐷 ) = ( 1 · 𝐷 ) ) |
| 34 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − 𝑇 ) ∈ ℂ ) |
| 35 |
29 34
|
mpan |
⊢ ( 𝑇 ∈ ℂ → ( 1 − 𝑇 ) ∈ ℂ ) |
| 36 |
35
|
ancri |
⊢ ( 𝑇 ∈ ℂ → ( ( 1 − 𝑇 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) ) |
| 37 |
|
adddir |
⊢ ( ( ( 1 − 𝑇 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) + 𝑇 ) · 𝐷 ) = ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) ) |
| 38 |
37
|
3expa |
⊢ ( ( ( ( 1 − 𝑇 ) ∈ ℂ ∧ 𝑇 ∈ ℂ ) ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) + 𝑇 ) · 𝐷 ) = ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) ) |
| 39 |
36 38
|
sylan |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) + 𝑇 ) · 𝐷 ) = ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) ) |
| 40 |
|
mullid |
⊢ ( 𝐷 ∈ ℂ → ( 1 · 𝐷 ) = 𝐷 ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 1 · 𝐷 ) = 𝐷 ) |
| 42 |
33 39 41
|
3eqtr3d |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) = 𝐷 ) |
| 43 |
26 28 42
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) = 𝐷 ) |
| 44 |
43
|
3adantr1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · 𝐷 ) + ( 𝑇 · 𝐷 ) ) = 𝐷 ) |
| 45 |
22 44
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 = 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = 𝐷 ) |
| 46 |
|
simplr2 |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 = 𝐷 ) → 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 47 |
45 46
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐶 = 𝐷 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 48 |
|
iccss2 |
⊢ ( ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 49 |
48
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 50 |
49
|
ancom2s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 51 |
50
|
3adantr3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐷 < 𝐶 ) → ( 𝐷 [,] 𝐶 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 53 |
9 7
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) |
| 54 |
53
|
3adantr3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) |
| 55 |
54 12
|
jca |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) |
| 56 |
|
iirev |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) |
| 57 |
23 56
|
sselid |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ℝ ) |
| 58 |
57
|
recnd |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( 1 − 𝑇 ) ∈ ℂ ) |
| 59 |
|
recn |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) |
| 60 |
|
mulcl |
⊢ ( ( ( 1 − 𝑇 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 1 − 𝑇 ) · 𝐶 ) ∈ ℂ ) |
| 61 |
58 59 60
|
syl2anr |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑇 ) · 𝐶 ) ∈ ℂ ) |
| 62 |
61
|
adantll |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑇 ) · 𝐶 ) ∈ ℂ ) |
| 63 |
|
recn |
⊢ ( 𝐷 ∈ ℝ → 𝐷 ∈ ℂ ) |
| 64 |
|
mulcl |
⊢ ( ( 𝑇 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 𝑇 · 𝐷 ) ∈ ℂ ) |
| 65 |
25 63 64
|
syl2anr |
⊢ ( ( 𝐷 ∈ ℝ ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 · 𝐷 ) ∈ ℂ ) |
| 66 |
65
|
adantlr |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( 𝑇 · 𝐷 ) ∈ ℂ ) |
| 67 |
62 66
|
addcomd |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ) |
| 68 |
67
|
3adantl3 |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ) |
| 69 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
| 70 |
29 69
|
mpan |
⊢ ( 𝑇 ∈ ℂ → ( 1 − ( 1 − 𝑇 ) ) = 𝑇 ) |
| 71 |
70
|
eqcomd |
⊢ ( 𝑇 ∈ ℂ → 𝑇 = ( 1 − ( 1 − 𝑇 ) ) ) |
| 72 |
71
|
oveq1d |
⊢ ( 𝑇 ∈ ℂ → ( 𝑇 · 𝐷 ) = ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) ) |
| 73 |
72
|
oveq1d |
⊢ ( 𝑇 ∈ ℂ → ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) = ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ) |
| 74 |
25 73
|
syl |
⊢ ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) = ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ) |
| 75 |
74
|
adantl |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( 𝑇 · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) = ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ) |
| 76 |
68 75
|
eqtrd |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) = ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ) |
| 77 |
|
lincmb01cmp |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ ( 1 − 𝑇 ) ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) |
| 78 |
56 77
|
sylan2 |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − ( 1 − 𝑇 ) ) · 𝐷 ) + ( ( 1 − 𝑇 ) · 𝐶 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) |
| 79 |
76 78
|
eqeltrd |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) |
| 80 |
79
|
ex |
⊢ ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 < 𝐶 ) → ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) ) |
| 81 |
80
|
3expa |
⊢ ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐷 < 𝐶 ) → ( 𝑇 ∈ ( 0 [,] 1 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) ) |
| 82 |
81
|
imp |
⊢ ( ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐷 < 𝐶 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) |
| 83 |
82
|
an32s |
⊢ ( ( ( ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ∧ 𝐷 < 𝐶 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) |
| 84 |
55 83
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐷 < 𝐶 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐷 [,] 𝐶 ) ) |
| 85 |
52 84
|
sseldd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) ∧ 𝐷 < 𝐶 ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 86 |
7 9
|
lttri4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ) ) → ( 𝐶 < 𝐷 ∨ 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) ) |
| 87 |
86
|
3adantr3 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( 𝐶 < 𝐷 ∨ 𝐶 = 𝐷 ∨ 𝐷 < 𝐶 ) ) |
| 88 |
20 47 85 87
|
mpjao3dan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) |
| 89 |
88
|
ex |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝐷 ∈ ( 𝐴 [,] 𝐵 ) ∧ 𝑇 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑇 ) · 𝐶 ) + ( 𝑇 · 𝐷 ) ) ∈ ( 𝐴 [,] 𝐵 ) ) ) |