| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iccss2 | ⊢ ( ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐶 [,] 𝐷 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝐶 [,] 𝐷 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 3 | 2 | 3adantr3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐶 [,] 𝐷 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝐶  <  𝐷 )  →  ( 𝐶 [,] 𝐷 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 5 |  | iccssre | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,] 𝐵 )  ⊆  ℝ ) | 
						
							| 6 | 5 | sselda | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐶  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐶  ∈  ℝ ) | 
						
							| 7 | 6 | adantrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  𝐶  ∈  ℝ ) | 
						
							| 8 | 5 | sselda | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐷  ∈  ℝ ) | 
						
							| 9 | 8 | adantrl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  𝐷  ∈  ℝ ) | 
						
							| 10 | 7 9 | jca | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ ) ) | 
						
							| 11 | 10 | 3adantr3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ ) ) | 
						
							| 12 |  | simpr3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝑇  ∈  ( 0 [,] 1 ) ) | 
						
							| 13 | 11 12 | jca | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 14 |  | lincmb01cmp | ⊢ ( ( ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ  ∧  𝐶  <  𝐷 )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐶 [,] 𝐷 ) ) | 
						
							| 15 | 14 | ex | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ  ∧  𝐶  <  𝐷 )  →  ( 𝑇  ∈  ( 0 [,] 1 )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐶 [,] 𝐷 ) ) ) | 
						
							| 16 | 15 | 3expa | ⊢ ( ( ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ )  ∧  𝐶  <  𝐷 )  →  ( 𝑇  ∈  ( 0 [,] 1 )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐶 [,] 𝐷 ) ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( ( ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ )  ∧  𝐶  <  𝐷 )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐶 [,] 𝐷 ) ) | 
						
							| 18 | 17 | an32s | ⊢ ( ( ( ( 𝐶  ∈  ℝ  ∧  𝐷  ∈  ℝ )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  ∧  𝐶  <  𝐷 )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐶 [,] 𝐷 ) ) | 
						
							| 19 | 13 18 | sylan | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝐶  <  𝐷 )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐶 [,] 𝐷 ) ) | 
						
							| 20 | 4 19 | sseldd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝐶  <  𝐷 )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 21 |  | oveq2 | ⊢ ( 𝐶  =  𝐷  →  ( ( 1  −  𝑇 )  ·  𝐶 )  =  ( ( 1  −  𝑇 )  ·  𝐷 ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝐶  =  𝐷  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  =  ( ( ( 1  −  𝑇 )  ·  𝐷 )  +  ( 𝑇  ·  𝐷 ) ) ) | 
						
							| 23 |  | unitssre | ⊢ ( 0 [,] 1 )  ⊆  ℝ | 
						
							| 24 | 23 | sseli | ⊢ ( 𝑇  ∈  ( 0 [,] 1 )  →  𝑇  ∈  ℝ ) | 
						
							| 25 | 24 | recnd | ⊢ ( 𝑇  ∈  ( 0 [,] 1 )  →  𝑇  ∈  ℂ ) | 
						
							| 26 | 25 | ad2antll | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝑇  ∈  ℂ ) | 
						
							| 27 | 8 | recnd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 ) )  →  𝐷  ∈  ℂ ) | 
						
							| 28 | 27 | adantrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  𝐷  ∈  ℂ ) | 
						
							| 29 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 30 |  | npcan | ⊢ ( ( 1  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( ( 1  −  𝑇 )  +  𝑇 )  =  1 ) | 
						
							| 31 | 29 30 | mpan | ⊢ ( 𝑇  ∈  ℂ  →  ( ( 1  −  𝑇 )  +  𝑇 )  =  1 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝑇  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  ( ( 1  −  𝑇 )  +  𝑇 )  =  1 ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( ( 𝑇  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  ( ( ( 1  −  𝑇 )  +  𝑇 )  ·  𝐷 )  =  ( 1  ·  𝐷 ) ) | 
						
							| 34 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 1  −  𝑇 )  ∈  ℂ ) | 
						
							| 35 | 29 34 | mpan | ⊢ ( 𝑇  ∈  ℂ  →  ( 1  −  𝑇 )  ∈  ℂ ) | 
						
							| 36 | 35 | ancri | ⊢ ( 𝑇  ∈  ℂ  →  ( ( 1  −  𝑇 )  ∈  ℂ  ∧  𝑇  ∈  ℂ ) ) | 
						
							| 37 |  | adddir | ⊢ ( ( ( 1  −  𝑇 )  ∈  ℂ  ∧  𝑇  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  ( ( ( 1  −  𝑇 )  +  𝑇 )  ·  𝐷 )  =  ( ( ( 1  −  𝑇 )  ·  𝐷 )  +  ( 𝑇  ·  𝐷 ) ) ) | 
						
							| 38 | 37 | 3expa | ⊢ ( ( ( ( 1  −  𝑇 )  ∈  ℂ  ∧  𝑇  ∈  ℂ )  ∧  𝐷  ∈  ℂ )  →  ( ( ( 1  −  𝑇 )  +  𝑇 )  ·  𝐷 )  =  ( ( ( 1  −  𝑇 )  ·  𝐷 )  +  ( 𝑇  ·  𝐷 ) ) ) | 
						
							| 39 | 36 38 | sylan | ⊢ ( ( 𝑇  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  ( ( ( 1  −  𝑇 )  +  𝑇 )  ·  𝐷 )  =  ( ( ( 1  −  𝑇 )  ·  𝐷 )  +  ( 𝑇  ·  𝐷 ) ) ) | 
						
							| 40 |  | mullid | ⊢ ( 𝐷  ∈  ℂ  →  ( 1  ·  𝐷 )  =  𝐷 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝑇  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  ( 1  ·  𝐷 )  =  𝐷 ) | 
						
							| 42 | 33 39 41 | 3eqtr3d | ⊢ ( ( 𝑇  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  ( ( ( 1  −  𝑇 )  ·  𝐷 )  +  ( 𝑇  ·  𝐷 ) )  =  𝐷 ) | 
						
							| 43 | 26 28 42 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( ( 1  −  𝑇 )  ·  𝐷 )  +  ( 𝑇  ·  𝐷 ) )  =  𝐷 ) | 
						
							| 44 | 43 | 3adantr1 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( ( 1  −  𝑇 )  ·  𝐷 )  +  ( 𝑇  ·  𝐷 ) )  =  𝐷 ) | 
						
							| 45 | 22 44 | sylan9eqr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝐶  =  𝐷 )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  =  𝐷 ) | 
						
							| 46 |  | simplr2 | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝐶  =  𝐷 )  →  𝐷  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 47 | 45 46 | eqeltrd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝐶  =  𝐷 )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 48 |  | iccss2 | ⊢ ( ( 𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐷 [,] 𝐶 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐶  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝐷 [,] 𝐶 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 50 | 49 | ancom2s | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝐷 [,] 𝐶 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 51 | 50 | 3adantr3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐷 [,] 𝐶 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝐷  <  𝐶 )  →  ( 𝐷 [,] 𝐶 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 53 | 9 7 | jca | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ ) ) | 
						
							| 54 | 53 | 3adantr3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ ) ) | 
						
							| 55 | 54 12 | jca | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) ) | 
						
							| 56 |  | iirev | ⊢ ( 𝑇  ∈  ( 0 [,] 1 )  →  ( 1  −  𝑇 )  ∈  ( 0 [,] 1 ) ) | 
						
							| 57 | 23 56 | sselid | ⊢ ( 𝑇  ∈  ( 0 [,] 1 )  →  ( 1  −  𝑇 )  ∈  ℝ ) | 
						
							| 58 | 57 | recnd | ⊢ ( 𝑇  ∈  ( 0 [,] 1 )  →  ( 1  −  𝑇 )  ∈  ℂ ) | 
						
							| 59 |  | recn | ⊢ ( 𝐶  ∈  ℝ  →  𝐶  ∈  ℂ ) | 
						
							| 60 |  | mulcl | ⊢ ( ( ( 1  −  𝑇 )  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( ( 1  −  𝑇 )  ·  𝐶 )  ∈  ℂ ) | 
						
							| 61 | 58 59 60 | syl2anr | ⊢ ( ( 𝐶  ∈  ℝ  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( ( 1  −  𝑇 )  ·  𝐶 )  ∈  ℂ ) | 
						
							| 62 | 61 | adantll | ⊢ ( ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( ( 1  −  𝑇 )  ·  𝐶 )  ∈  ℂ ) | 
						
							| 63 |  | recn | ⊢ ( 𝐷  ∈  ℝ  →  𝐷  ∈  ℂ ) | 
						
							| 64 |  | mulcl | ⊢ ( ( 𝑇  ∈  ℂ  ∧  𝐷  ∈  ℂ )  →  ( 𝑇  ·  𝐷 )  ∈  ℂ ) | 
						
							| 65 | 25 63 64 | syl2anr | ⊢ ( ( 𝐷  ∈  ℝ  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( 𝑇  ·  𝐷 )  ∈  ℂ ) | 
						
							| 66 | 65 | adantlr | ⊢ ( ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( 𝑇  ·  𝐷 )  ∈  ℂ ) | 
						
							| 67 | 62 66 | addcomd | ⊢ ( ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  =  ( ( 𝑇  ·  𝐷 )  +  ( ( 1  −  𝑇 )  ·  𝐶 ) ) ) | 
						
							| 68 | 67 | 3adantl3 | ⊢ ( ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ  ∧  𝐷  <  𝐶 )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  =  ( ( 𝑇  ·  𝐷 )  +  ( ( 1  −  𝑇 )  ·  𝐶 ) ) ) | 
						
							| 69 |  | nncan | ⊢ ( ( 1  ∈  ℂ  ∧  𝑇  ∈  ℂ )  →  ( 1  −  ( 1  −  𝑇 ) )  =  𝑇 ) | 
						
							| 70 | 29 69 | mpan | ⊢ ( 𝑇  ∈  ℂ  →  ( 1  −  ( 1  −  𝑇 ) )  =  𝑇 ) | 
						
							| 71 | 70 | eqcomd | ⊢ ( 𝑇  ∈  ℂ  →  𝑇  =  ( 1  −  ( 1  −  𝑇 ) ) ) | 
						
							| 72 | 71 | oveq1d | ⊢ ( 𝑇  ∈  ℂ  →  ( 𝑇  ·  𝐷 )  =  ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝐷 ) ) | 
						
							| 73 | 72 | oveq1d | ⊢ ( 𝑇  ∈  ℂ  →  ( ( 𝑇  ·  𝐷 )  +  ( ( 1  −  𝑇 )  ·  𝐶 ) )  =  ( ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝐷 )  +  ( ( 1  −  𝑇 )  ·  𝐶 ) ) ) | 
						
							| 74 | 25 73 | syl | ⊢ ( 𝑇  ∈  ( 0 [,] 1 )  →  ( ( 𝑇  ·  𝐷 )  +  ( ( 1  −  𝑇 )  ·  𝐶 ) )  =  ( ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝐷 )  +  ( ( 1  −  𝑇 )  ·  𝐶 ) ) ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ  ∧  𝐷  <  𝐶 )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑇  ·  𝐷 )  +  ( ( 1  −  𝑇 )  ·  𝐶 ) )  =  ( ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝐷 )  +  ( ( 1  −  𝑇 )  ·  𝐶 ) ) ) | 
						
							| 76 | 68 75 | eqtrd | ⊢ ( ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ  ∧  𝐷  <  𝐶 )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  =  ( ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝐷 )  +  ( ( 1  −  𝑇 )  ·  𝐶 ) ) ) | 
						
							| 77 |  | lincmb01cmp | ⊢ ( ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ  ∧  𝐷  <  𝐶 )  ∧  ( 1  −  𝑇 )  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝐷 )  +  ( ( 1  −  𝑇 )  ·  𝐶 ) )  ∈  ( 𝐷 [,] 𝐶 ) ) | 
						
							| 78 | 56 77 | sylan2 | ⊢ ( ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ  ∧  𝐷  <  𝐶 )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1  −  ( 1  −  𝑇 ) )  ·  𝐷 )  +  ( ( 1  −  𝑇 )  ·  𝐶 ) )  ∈  ( 𝐷 [,] 𝐶 ) ) | 
						
							| 79 | 76 78 | eqeltrd | ⊢ ( ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ  ∧  𝐷  <  𝐶 )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐷 [,] 𝐶 ) ) | 
						
							| 80 | 79 | ex | ⊢ ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ  ∧  𝐷  <  𝐶 )  →  ( 𝑇  ∈  ( 0 [,] 1 )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐷 [,] 𝐶 ) ) ) | 
						
							| 81 | 80 | 3expa | ⊢ ( ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐷  <  𝐶 )  →  ( 𝑇  ∈  ( 0 [,] 1 )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐷 [,] 𝐶 ) ) ) | 
						
							| 82 | 81 | imp | ⊢ ( ( ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐷  <  𝐶 )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐷 [,] 𝐶 ) ) | 
						
							| 83 | 82 | an32s | ⊢ ( ( ( ( 𝐷  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  ∧  𝐷  <  𝐶 )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐷 [,] 𝐶 ) ) | 
						
							| 84 | 55 83 | sylan | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝐷  <  𝐶 )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐷 [,] 𝐶 ) ) | 
						
							| 85 | 52 84 | sseldd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  ∧  𝐷  <  𝐶 )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 86 | 7 9 | lttri4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 ) ) )  →  ( 𝐶  <  𝐷  ∨  𝐶  =  𝐷  ∨  𝐷  <  𝐶 ) ) | 
						
							| 87 | 86 | 3adantr3 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( 𝐶  <  𝐷  ∨  𝐶  =  𝐷  ∨  𝐷  <  𝐶 ) ) | 
						
							| 88 | 20 47 85 87 | mpjao3dan | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) ) )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 89 | 88 | ex | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐶  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐷  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝑇  ∈  ( 0 [,] 1 ) )  →  ( ( ( 1  −  𝑇 )  ·  𝐶 )  +  ( 𝑇  ·  𝐷 ) )  ∈  ( 𝐴 [,] 𝐵 ) ) ) |