| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccss2 |
|- ( ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) -> ( C [,] D ) C_ ( A [,] B ) ) |
| 2 |
1
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> ( C [,] D ) C_ ( A [,] B ) ) |
| 3 |
2
|
3adantr3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( C [,] D ) C_ ( A [,] B ) ) |
| 4 |
3
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ C < D ) -> ( C [,] D ) C_ ( A [,] B ) ) |
| 5 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 6 |
5
|
sselda |
|- ( ( ( A e. RR /\ B e. RR ) /\ C e. ( A [,] B ) ) -> C e. RR ) |
| 7 |
6
|
adantrr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> C e. RR ) |
| 8 |
5
|
sselda |
|- ( ( ( A e. RR /\ B e. RR ) /\ D e. ( A [,] B ) ) -> D e. RR ) |
| 9 |
8
|
adantrl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> D e. RR ) |
| 10 |
7 9
|
jca |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> ( C e. RR /\ D e. RR ) ) |
| 11 |
10
|
3adantr3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( C e. RR /\ D e. RR ) ) |
| 12 |
|
simpr3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> T e. ( 0 [,] 1 ) ) |
| 13 |
11 12
|
jca |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( ( C e. RR /\ D e. RR ) /\ T e. ( 0 [,] 1 ) ) ) |
| 14 |
|
lincmb01cmp |
|- ( ( ( C e. RR /\ D e. RR /\ C < D ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( C [,] D ) ) |
| 15 |
14
|
ex |
|- ( ( C e. RR /\ D e. RR /\ C < D ) -> ( T e. ( 0 [,] 1 ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( C [,] D ) ) ) |
| 16 |
15
|
3expa |
|- ( ( ( C e. RR /\ D e. RR ) /\ C < D ) -> ( T e. ( 0 [,] 1 ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( C [,] D ) ) ) |
| 17 |
16
|
imp |
|- ( ( ( ( C e. RR /\ D e. RR ) /\ C < D ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( C [,] D ) ) |
| 18 |
17
|
an32s |
|- ( ( ( ( C e. RR /\ D e. RR ) /\ T e. ( 0 [,] 1 ) ) /\ C < D ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( C [,] D ) ) |
| 19 |
13 18
|
sylan |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ C < D ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( C [,] D ) ) |
| 20 |
4 19
|
sseldd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ C < D ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( A [,] B ) ) |
| 21 |
|
oveq2 |
|- ( C = D -> ( ( 1 - T ) x. C ) = ( ( 1 - T ) x. D ) ) |
| 22 |
21
|
oveq1d |
|- ( C = D -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) = ( ( ( 1 - T ) x. D ) + ( T x. D ) ) ) |
| 23 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 24 |
23
|
sseli |
|- ( T e. ( 0 [,] 1 ) -> T e. RR ) |
| 25 |
24
|
recnd |
|- ( T e. ( 0 [,] 1 ) -> T e. CC ) |
| 26 |
25
|
ad2antll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> T e. CC ) |
| 27 |
8
|
recnd |
|- ( ( ( A e. RR /\ B e. RR ) /\ D e. ( A [,] B ) ) -> D e. CC ) |
| 28 |
27
|
adantrr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> D e. CC ) |
| 29 |
|
ax-1cn |
|- 1 e. CC |
| 30 |
|
npcan |
|- ( ( 1 e. CC /\ T e. CC ) -> ( ( 1 - T ) + T ) = 1 ) |
| 31 |
29 30
|
mpan |
|- ( T e. CC -> ( ( 1 - T ) + T ) = 1 ) |
| 32 |
31
|
adantr |
|- ( ( T e. CC /\ D e. CC ) -> ( ( 1 - T ) + T ) = 1 ) |
| 33 |
32
|
oveq1d |
|- ( ( T e. CC /\ D e. CC ) -> ( ( ( 1 - T ) + T ) x. D ) = ( 1 x. D ) ) |
| 34 |
|
subcl |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - T ) e. CC ) |
| 35 |
29 34
|
mpan |
|- ( T e. CC -> ( 1 - T ) e. CC ) |
| 36 |
35
|
ancri |
|- ( T e. CC -> ( ( 1 - T ) e. CC /\ T e. CC ) ) |
| 37 |
|
adddir |
|- ( ( ( 1 - T ) e. CC /\ T e. CC /\ D e. CC ) -> ( ( ( 1 - T ) + T ) x. D ) = ( ( ( 1 - T ) x. D ) + ( T x. D ) ) ) |
| 38 |
37
|
3expa |
|- ( ( ( ( 1 - T ) e. CC /\ T e. CC ) /\ D e. CC ) -> ( ( ( 1 - T ) + T ) x. D ) = ( ( ( 1 - T ) x. D ) + ( T x. D ) ) ) |
| 39 |
36 38
|
sylan |
|- ( ( T e. CC /\ D e. CC ) -> ( ( ( 1 - T ) + T ) x. D ) = ( ( ( 1 - T ) x. D ) + ( T x. D ) ) ) |
| 40 |
|
mullid |
|- ( D e. CC -> ( 1 x. D ) = D ) |
| 41 |
40
|
adantl |
|- ( ( T e. CC /\ D e. CC ) -> ( 1 x. D ) = D ) |
| 42 |
33 39 41
|
3eqtr3d |
|- ( ( T e. CC /\ D e. CC ) -> ( ( ( 1 - T ) x. D ) + ( T x. D ) ) = D ) |
| 43 |
26 28 42
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( 1 - T ) x. D ) + ( T x. D ) ) = D ) |
| 44 |
43
|
3adantr1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( 1 - T ) x. D ) + ( T x. D ) ) = D ) |
| 45 |
22 44
|
sylan9eqr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ C = D ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) = D ) |
| 46 |
|
simplr2 |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ C = D ) -> D e. ( A [,] B ) ) |
| 47 |
45 46
|
eqeltrd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ C = D ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( A [,] B ) ) |
| 48 |
|
iccss2 |
|- ( ( D e. ( A [,] B ) /\ C e. ( A [,] B ) ) -> ( D [,] C ) C_ ( A [,] B ) ) |
| 49 |
48
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( D e. ( A [,] B ) /\ C e. ( A [,] B ) ) ) -> ( D [,] C ) C_ ( A [,] B ) ) |
| 50 |
49
|
ancom2s |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> ( D [,] C ) C_ ( A [,] B ) ) |
| 51 |
50
|
3adantr3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( D [,] C ) C_ ( A [,] B ) ) |
| 52 |
51
|
adantr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ D < C ) -> ( D [,] C ) C_ ( A [,] B ) ) |
| 53 |
9 7
|
jca |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> ( D e. RR /\ C e. RR ) ) |
| 54 |
53
|
3adantr3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( D e. RR /\ C e. RR ) ) |
| 55 |
54 12
|
jca |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( ( D e. RR /\ C e. RR ) /\ T e. ( 0 [,] 1 ) ) ) |
| 56 |
|
iirev |
|- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. ( 0 [,] 1 ) ) |
| 57 |
23 56
|
sselid |
|- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. RR ) |
| 58 |
57
|
recnd |
|- ( T e. ( 0 [,] 1 ) -> ( 1 - T ) e. CC ) |
| 59 |
|
recn |
|- ( C e. RR -> C e. CC ) |
| 60 |
|
mulcl |
|- ( ( ( 1 - T ) e. CC /\ C e. CC ) -> ( ( 1 - T ) x. C ) e. CC ) |
| 61 |
58 59 60
|
syl2anr |
|- ( ( C e. RR /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) x. C ) e. CC ) |
| 62 |
61
|
adantll |
|- ( ( ( D e. RR /\ C e. RR ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) x. C ) e. CC ) |
| 63 |
|
recn |
|- ( D e. RR -> D e. CC ) |
| 64 |
|
mulcl |
|- ( ( T e. CC /\ D e. CC ) -> ( T x. D ) e. CC ) |
| 65 |
25 63 64
|
syl2anr |
|- ( ( D e. RR /\ T e. ( 0 [,] 1 ) ) -> ( T x. D ) e. CC ) |
| 66 |
65
|
adantlr |
|- ( ( ( D e. RR /\ C e. RR ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. D ) e. CC ) |
| 67 |
62 66
|
addcomd |
|- ( ( ( D e. RR /\ C e. RR ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) = ( ( T x. D ) + ( ( 1 - T ) x. C ) ) ) |
| 68 |
67
|
3adantl3 |
|- ( ( ( D e. RR /\ C e. RR /\ D < C ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) = ( ( T x. D ) + ( ( 1 - T ) x. C ) ) ) |
| 69 |
|
nncan |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - ( 1 - T ) ) = T ) |
| 70 |
29 69
|
mpan |
|- ( T e. CC -> ( 1 - ( 1 - T ) ) = T ) |
| 71 |
70
|
eqcomd |
|- ( T e. CC -> T = ( 1 - ( 1 - T ) ) ) |
| 72 |
71
|
oveq1d |
|- ( T e. CC -> ( T x. D ) = ( ( 1 - ( 1 - T ) ) x. D ) ) |
| 73 |
72
|
oveq1d |
|- ( T e. CC -> ( ( T x. D ) + ( ( 1 - T ) x. C ) ) = ( ( ( 1 - ( 1 - T ) ) x. D ) + ( ( 1 - T ) x. C ) ) ) |
| 74 |
25 73
|
syl |
|- ( T e. ( 0 [,] 1 ) -> ( ( T x. D ) + ( ( 1 - T ) x. C ) ) = ( ( ( 1 - ( 1 - T ) ) x. D ) + ( ( 1 - T ) x. C ) ) ) |
| 75 |
74
|
adantl |
|- ( ( ( D e. RR /\ C e. RR /\ D < C ) /\ T e. ( 0 [,] 1 ) ) -> ( ( T x. D ) + ( ( 1 - T ) x. C ) ) = ( ( ( 1 - ( 1 - T ) ) x. D ) + ( ( 1 - T ) x. C ) ) ) |
| 76 |
68 75
|
eqtrd |
|- ( ( ( D e. RR /\ C e. RR /\ D < C ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) = ( ( ( 1 - ( 1 - T ) ) x. D ) + ( ( 1 - T ) x. C ) ) ) |
| 77 |
|
lincmb01cmp |
|- ( ( ( D e. RR /\ C e. RR /\ D < C ) /\ ( 1 - T ) e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. D ) + ( ( 1 - T ) x. C ) ) e. ( D [,] C ) ) |
| 78 |
56 77
|
sylan2 |
|- ( ( ( D e. RR /\ C e. RR /\ D < C ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - ( 1 - T ) ) x. D ) + ( ( 1 - T ) x. C ) ) e. ( D [,] C ) ) |
| 79 |
76 78
|
eqeltrd |
|- ( ( ( D e. RR /\ C e. RR /\ D < C ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( D [,] C ) ) |
| 80 |
79
|
ex |
|- ( ( D e. RR /\ C e. RR /\ D < C ) -> ( T e. ( 0 [,] 1 ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( D [,] C ) ) ) |
| 81 |
80
|
3expa |
|- ( ( ( D e. RR /\ C e. RR ) /\ D < C ) -> ( T e. ( 0 [,] 1 ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( D [,] C ) ) ) |
| 82 |
81
|
imp |
|- ( ( ( ( D e. RR /\ C e. RR ) /\ D < C ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( D [,] C ) ) |
| 83 |
82
|
an32s |
|- ( ( ( ( D e. RR /\ C e. RR ) /\ T e. ( 0 [,] 1 ) ) /\ D < C ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( D [,] C ) ) |
| 84 |
55 83
|
sylan |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ D < C ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( D [,] C ) ) |
| 85 |
52 84
|
sseldd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) /\ D < C ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( A [,] B ) ) |
| 86 |
7 9
|
lttri4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) ) ) -> ( C < D \/ C = D \/ D < C ) ) |
| 87 |
86
|
3adantr3 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( C < D \/ C = D \/ D < C ) ) |
| 88 |
20 47 85 87
|
mpjao3dan |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( A [,] B ) ) |
| 89 |
88
|
ex |
|- ( ( A e. RR /\ B e. RR ) -> ( ( C e. ( A [,] B ) /\ D e. ( A [,] B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. C ) + ( T x. D ) ) e. ( A [,] B ) ) ) |