| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oprpiece1.1 |  |-  A e. RR | 
						
							| 2 |  | oprpiece1.2 |  |-  B e. RR | 
						
							| 3 |  | oprpiece1.3 |  |-  A <_ B | 
						
							| 4 |  | oprpiece1.4 |  |-  R e. _V | 
						
							| 5 |  | oprpiece1.5 |  |-  S e. _V | 
						
							| 6 |  | oprpiece1.6 |  |-  K e. ( A [,] B ) | 
						
							| 7 |  | oprpiece1.7 |  |-  F = ( x e. ( A [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) | 
						
							| 8 |  | oprpiece1.8 |  |-  G = ( x e. ( A [,] K ) , y e. C |-> R ) | 
						
							| 9 | 1 | rexri |  |-  A e. RR* | 
						
							| 10 | 2 | rexri |  |-  B e. RR* | 
						
							| 11 |  | lbicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) | 
						
							| 12 | 9 10 3 11 | mp3an |  |-  A e. ( A [,] B ) | 
						
							| 13 |  | iccss2 |  |-  ( ( A e. ( A [,] B ) /\ K e. ( A [,] B ) ) -> ( A [,] K ) C_ ( A [,] B ) ) | 
						
							| 14 | 12 6 13 | mp2an |  |-  ( A [,] K ) C_ ( A [,] B ) | 
						
							| 15 |  | ssid |  |-  C C_ C | 
						
							| 16 |  | resmpo |  |-  ( ( ( A [,] K ) C_ ( A [,] B ) /\ C C_ C ) -> ( ( x e. ( A [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) |` ( ( A [,] K ) X. C ) ) = ( x e. ( A [,] K ) , y e. C |-> if ( x <_ K , R , S ) ) ) | 
						
							| 17 | 14 15 16 | mp2an |  |-  ( ( x e. ( A [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) |` ( ( A [,] K ) X. C ) ) = ( x e. ( A [,] K ) , y e. C |-> if ( x <_ K , R , S ) ) | 
						
							| 18 | 7 | reseq1i |  |-  ( F |` ( ( A [,] K ) X. C ) ) = ( ( x e. ( A [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) |` ( ( A [,] K ) X. C ) ) | 
						
							| 19 |  | eliccxr |  |-  ( K e. ( A [,] B ) -> K e. RR* ) | 
						
							| 20 | 6 19 | ax-mp |  |-  K e. RR* | 
						
							| 21 |  | iccleub |  |-  ( ( A e. RR* /\ K e. RR* /\ x e. ( A [,] K ) ) -> x <_ K ) | 
						
							| 22 | 9 20 21 | mp3an12 |  |-  ( x e. ( A [,] K ) -> x <_ K ) | 
						
							| 23 | 22 | iftrued |  |-  ( x e. ( A [,] K ) -> if ( x <_ K , R , S ) = R ) | 
						
							| 24 | 23 | adantr |  |-  ( ( x e. ( A [,] K ) /\ y e. C ) -> if ( x <_ K , R , S ) = R ) | 
						
							| 25 | 24 | mpoeq3ia |  |-  ( x e. ( A [,] K ) , y e. C |-> if ( x <_ K , R , S ) ) = ( x e. ( A [,] K ) , y e. C |-> R ) | 
						
							| 26 | 8 25 | eqtr4i |  |-  G = ( x e. ( A [,] K ) , y e. C |-> if ( x <_ K , R , S ) ) | 
						
							| 27 | 17 18 26 | 3eqtr4i |  |-  ( F |` ( ( A [,] K ) X. C ) ) = G |