| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oprpiece1.1 | ⊢ 𝐴  ∈  ℝ | 
						
							| 2 |  | oprpiece1.2 | ⊢ 𝐵  ∈  ℝ | 
						
							| 3 |  | oprpiece1.3 | ⊢ 𝐴  ≤  𝐵 | 
						
							| 4 |  | oprpiece1.4 | ⊢ 𝑅  ∈  V | 
						
							| 5 |  | oprpiece1.5 | ⊢ 𝑆  ∈  V | 
						
							| 6 |  | oprpiece1.6 | ⊢ 𝐾  ∈  ( 𝐴 [,] 𝐵 ) | 
						
							| 7 |  | oprpiece1.7 | ⊢ 𝐹  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) ) | 
						
							| 8 |  | oprpiece1.8 | ⊢ 𝐺  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐾 ) ,  𝑦  ∈  𝐶  ↦  𝑅 ) | 
						
							| 9 | 1 | rexri | ⊢ 𝐴  ∈  ℝ* | 
						
							| 10 | 2 | rexri | ⊢ 𝐵  ∈  ℝ* | 
						
							| 11 |  | lbicc2 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐵  ∈  ℝ*  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 12 | 9 10 3 11 | mp3an | ⊢ 𝐴  ∈  ( 𝐴 [,] 𝐵 ) | 
						
							| 13 |  | iccss2 | ⊢ ( ( 𝐴  ∈  ( 𝐴 [,] 𝐵 )  ∧  𝐾  ∈  ( 𝐴 [,] 𝐵 ) )  →  ( 𝐴 [,] 𝐾 )  ⊆  ( 𝐴 [,] 𝐵 ) ) | 
						
							| 14 | 12 6 13 | mp2an | ⊢ ( 𝐴 [,] 𝐾 )  ⊆  ( 𝐴 [,] 𝐵 ) | 
						
							| 15 |  | ssid | ⊢ 𝐶  ⊆  𝐶 | 
						
							| 16 |  | resmpo | ⊢ ( ( ( 𝐴 [,] 𝐾 )  ⊆  ( 𝐴 [,] 𝐵 )  ∧  𝐶  ⊆  𝐶 )  →  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) )  ↾  ( ( 𝐴 [,] 𝐾 )  ×  𝐶 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐾 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) ) ) | 
						
							| 17 | 14 15 16 | mp2an | ⊢ ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) )  ↾  ( ( 𝐴 [,] 𝐾 )  ×  𝐶 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐾 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) ) | 
						
							| 18 | 7 | reseq1i | ⊢ ( 𝐹  ↾  ( ( 𝐴 [,] 𝐾 )  ×  𝐶 ) )  =  ( ( 𝑥  ∈  ( 𝐴 [,] 𝐵 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) )  ↾  ( ( 𝐴 [,] 𝐾 )  ×  𝐶 ) ) | 
						
							| 19 |  | eliccxr | ⊢ ( 𝐾  ∈  ( 𝐴 [,] 𝐵 )  →  𝐾  ∈  ℝ* ) | 
						
							| 20 | 6 19 | ax-mp | ⊢ 𝐾  ∈  ℝ* | 
						
							| 21 |  | iccleub | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐾  ∈  ℝ*  ∧  𝑥  ∈  ( 𝐴 [,] 𝐾 ) )  →  𝑥  ≤  𝐾 ) | 
						
							| 22 | 9 20 21 | mp3an12 | ⊢ ( 𝑥  ∈  ( 𝐴 [,] 𝐾 )  →  𝑥  ≤  𝐾 ) | 
						
							| 23 | 22 | iftrued | ⊢ ( 𝑥  ∈  ( 𝐴 [,] 𝐾 )  →  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 )  =  𝑅 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝑥  ∈  ( 𝐴 [,] 𝐾 )  ∧  𝑦  ∈  𝐶 )  →  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 )  =  𝑅 ) | 
						
							| 25 | 24 | mpoeq3ia | ⊢ ( 𝑥  ∈  ( 𝐴 [,] 𝐾 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) )  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐾 ) ,  𝑦  ∈  𝐶  ↦  𝑅 ) | 
						
							| 26 | 8 25 | eqtr4i | ⊢ 𝐺  =  ( 𝑥  ∈  ( 𝐴 [,] 𝐾 ) ,  𝑦  ∈  𝐶  ↦  if ( 𝑥  ≤  𝐾 ,  𝑅 ,  𝑆 ) ) | 
						
							| 27 | 17 18 26 | 3eqtr4i | ⊢ ( 𝐹  ↾  ( ( 𝐴 [,] 𝐾 )  ×  𝐶 ) )  =  𝐺 |