| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oprpiece1.1 |  |-  A e. RR | 
						
							| 2 |  | oprpiece1.2 |  |-  B e. RR | 
						
							| 3 |  | oprpiece1.3 |  |-  A <_ B | 
						
							| 4 |  | oprpiece1.4 |  |-  R e. _V | 
						
							| 5 |  | oprpiece1.5 |  |-  S e. _V | 
						
							| 6 |  | oprpiece1.6 |  |-  K e. ( A [,] B ) | 
						
							| 7 |  | oprpiece1.7 |  |-  F = ( x e. ( A [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) | 
						
							| 8 |  | oprpiece1.9 |  |-  ( x = K -> R = P ) | 
						
							| 9 |  | oprpiece1.10 |  |-  ( x = K -> S = Q ) | 
						
							| 10 |  | oprpiece1.11 |  |-  ( y e. C -> P = Q ) | 
						
							| 11 |  | oprpiece1.12 |  |-  G = ( x e. ( K [,] B ) , y e. C |-> S ) | 
						
							| 12 | 1 | rexri |  |-  A e. RR* | 
						
							| 13 | 2 | rexri |  |-  B e. RR* | 
						
							| 14 |  | ubicc2 |  |-  ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) | 
						
							| 15 | 12 13 3 14 | mp3an |  |-  B e. ( A [,] B ) | 
						
							| 16 |  | iccss2 |  |-  ( ( K e. ( A [,] B ) /\ B e. ( A [,] B ) ) -> ( K [,] B ) C_ ( A [,] B ) ) | 
						
							| 17 | 6 15 16 | mp2an |  |-  ( K [,] B ) C_ ( A [,] B ) | 
						
							| 18 |  | ssid |  |-  C C_ C | 
						
							| 19 |  | resmpo |  |-  ( ( ( K [,] B ) C_ ( A [,] B ) /\ C C_ C ) -> ( ( x e. ( A [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) |` ( ( K [,] B ) X. C ) ) = ( x e. ( K [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) ) | 
						
							| 20 | 17 18 19 | mp2an |  |-  ( ( x e. ( A [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) |` ( ( K [,] B ) X. C ) ) = ( x e. ( K [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) | 
						
							| 21 | 7 | reseq1i |  |-  ( F |` ( ( K [,] B ) X. C ) ) = ( ( x e. ( A [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) |` ( ( K [,] B ) X. C ) ) | 
						
							| 22 | 10 | ad2antlr |  |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> P = Q ) | 
						
							| 23 |  | simpr |  |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> x <_ K ) | 
						
							| 24 | 1 2 | elicc2i |  |-  ( K e. ( A [,] B ) <-> ( K e. RR /\ A <_ K /\ K <_ B ) ) | 
						
							| 25 | 24 | simp1bi |  |-  ( K e. ( A [,] B ) -> K e. RR ) | 
						
							| 26 | 6 25 | ax-mp |  |-  K e. RR | 
						
							| 27 | 26 2 | elicc2i |  |-  ( x e. ( K [,] B ) <-> ( x e. RR /\ K <_ x /\ x <_ B ) ) | 
						
							| 28 | 27 | simp2bi |  |-  ( x e. ( K [,] B ) -> K <_ x ) | 
						
							| 29 | 28 | ad2antrr |  |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> K <_ x ) | 
						
							| 30 | 27 | simp1bi |  |-  ( x e. ( K [,] B ) -> x e. RR ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> x e. RR ) | 
						
							| 32 |  | letri3 |  |-  ( ( x e. RR /\ K e. RR ) -> ( x = K <-> ( x <_ K /\ K <_ x ) ) ) | 
						
							| 33 | 31 26 32 | sylancl |  |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> ( x = K <-> ( x <_ K /\ K <_ x ) ) ) | 
						
							| 34 | 23 29 33 | mpbir2and |  |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> x = K ) | 
						
							| 35 | 34 8 | syl |  |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> R = P ) | 
						
							| 36 | 34 9 | syl |  |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> S = Q ) | 
						
							| 37 | 22 35 36 | 3eqtr4d |  |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ x <_ K ) -> R = S ) | 
						
							| 38 |  | eqidd |  |-  ( ( ( x e. ( K [,] B ) /\ y e. C ) /\ -. x <_ K ) -> S = S ) | 
						
							| 39 | 37 38 | ifeqda |  |-  ( ( x e. ( K [,] B ) /\ y e. C ) -> if ( x <_ K , R , S ) = S ) | 
						
							| 40 | 39 | mpoeq3ia |  |-  ( x e. ( K [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) = ( x e. ( K [,] B ) , y e. C |-> S ) | 
						
							| 41 | 11 40 | eqtr4i |  |-  G = ( x e. ( K [,] B ) , y e. C |-> if ( x <_ K , R , S ) ) | 
						
							| 42 | 20 21 41 | 3eqtr4i |  |-  ( F |` ( ( K [,] B ) X. C ) ) = G |