Metamath Proof Explorer


Theorem oprpiece1res2

Description: Restriction to the second part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010) (Proof shortened by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypotheses oprpiece1.1 A
oprpiece1.2 B
oprpiece1.3 A B
oprpiece1.4 R V
oprpiece1.5 S V
oprpiece1.6 K A B
oprpiece1.7 F = x A B , y C if x K R S
oprpiece1.9 x = K R = P
oprpiece1.10 x = K S = Q
oprpiece1.11 y C P = Q
oprpiece1.12 G = x K B , y C S
Assertion oprpiece1res2 F K B × C = G

Proof

Step Hyp Ref Expression
1 oprpiece1.1 A
2 oprpiece1.2 B
3 oprpiece1.3 A B
4 oprpiece1.4 R V
5 oprpiece1.5 S V
6 oprpiece1.6 K A B
7 oprpiece1.7 F = x A B , y C if x K R S
8 oprpiece1.9 x = K R = P
9 oprpiece1.10 x = K S = Q
10 oprpiece1.11 y C P = Q
11 oprpiece1.12 G = x K B , y C S
12 1 rexri A *
13 2 rexri B *
14 ubicc2 A * B * A B B A B
15 12 13 3 14 mp3an B A B
16 iccss2 K A B B A B K B A B
17 6 15 16 mp2an K B A B
18 ssid C C
19 resmpo K B A B C C x A B , y C if x K R S K B × C = x K B , y C if x K R S
20 17 18 19 mp2an x A B , y C if x K R S K B × C = x K B , y C if x K R S
21 7 reseq1i F K B × C = x A B , y C if x K R S K B × C
22 10 ad2antlr x K B y C x K P = Q
23 simpr x K B y C x K x K
24 1 2 elicc2i K A B K A K K B
25 24 simp1bi K A B K
26 6 25 ax-mp K
27 26 2 elicc2i x K B x K x x B
28 27 simp2bi x K B K x
29 28 ad2antrr x K B y C x K K x
30 27 simp1bi x K B x
31 30 ad2antrr x K B y C x K x
32 letri3 x K x = K x K K x
33 31 26 32 sylancl x K B y C x K x = K x K K x
34 23 29 33 mpbir2and x K B y C x K x = K
35 34 8 syl x K B y C x K R = P
36 34 9 syl x K B y C x K S = Q
37 22 35 36 3eqtr4d x K B y C x K R = S
38 eqidd x K B y C ¬ x K S = S
39 37 38 ifeqda x K B y C if x K R S = S
40 39 mpoeq3ia x K B , y C if x K R S = x K B , y C S
41 11 40 eqtr4i G = x K B , y C if x K R S
42 20 21 41 3eqtr4i F K B × C = G