Metamath Proof Explorer


Theorem iirev

Description: Reverse the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion iirev ( 𝑋 ∈ ( 0 [,] 1 ) → ( 1 − 𝑋 ) ∈ ( 0 [,] 1 ) )

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 resubcl ( ( 1 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 1 − 𝑋 ) ∈ ℝ )
3 1 2 mpan ( 𝑋 ∈ ℝ → ( 1 − 𝑋 ) ∈ ℝ )
4 3 3ad2ant1 ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1 ) → ( 1 − 𝑋 ) ∈ ℝ )
5 simp3 ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1 ) → 𝑋 ≤ 1 )
6 simp1 ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1 ) → 𝑋 ∈ ℝ )
7 subge0 ( ( 1 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 0 ≤ ( 1 − 𝑋 ) ↔ 𝑋 ≤ 1 ) )
8 1 6 7 sylancr ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1 ) → ( 0 ≤ ( 1 − 𝑋 ) ↔ 𝑋 ≤ 1 ) )
9 5 8 mpbird ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1 ) → 0 ≤ ( 1 − 𝑋 ) )
10 simp2 ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1 ) → 0 ≤ 𝑋 )
11 subge02 ( ( 1 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( 0 ≤ 𝑋 ↔ ( 1 − 𝑋 ) ≤ 1 ) )
12 1 6 11 sylancr ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1 ) → ( 0 ≤ 𝑋 ↔ ( 1 − 𝑋 ) ≤ 1 ) )
13 10 12 mpbid ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1 ) → ( 1 − 𝑋 ) ≤ 1 )
14 4 9 13 3jca ( ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1 ) → ( ( 1 − 𝑋 ) ∈ ℝ ∧ 0 ≤ ( 1 − 𝑋 ) ∧ ( 1 − 𝑋 ) ≤ 1 ) )
15 elicc01 ( 𝑋 ∈ ( 0 [,] 1 ) ↔ ( 𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1 ) )
16 elicc01 ( ( 1 − 𝑋 ) ∈ ( 0 [,] 1 ) ↔ ( ( 1 − 𝑋 ) ∈ ℝ ∧ 0 ≤ ( 1 − 𝑋 ) ∧ ( 1 − 𝑋 ) ≤ 1 ) )
17 14 15 16 3imtr4i ( 𝑋 ∈ ( 0 [,] 1 ) → ( 1 − 𝑋 ) ∈ ( 0 [,] 1 ) )