Metamath Proof Explorer


Theorem iirev

Description: Reverse the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion iirev X011X01

Proof

Step Hyp Ref Expression
1 1re 1
2 resubcl 1X1X
3 1 2 mpan X1X
4 3 3ad2ant1 X0XX11X
5 simp3 X0XX1X1
6 simp1 X0XX1X
7 subge0 1X01XX1
8 1 6 7 sylancr X0XX101XX1
9 5 8 mpbird X0XX101X
10 simp2 X0XX10X
11 subge02 1X0X1X1
12 1 6 11 sylancr X0XX10X1X1
13 10 12 mpbid X0XX11X1
14 4 9 13 3jca X0XX11X01X1X1
15 elicc01 X01X0XX1
16 elicc01 1X011X01X1X1
17 14 15 16 3imtr4i X011X01