| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfii3.1 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
| 2 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
| 3 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
| 4 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 5 |
3 4
|
sstri |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 6 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 7 |
1
|
cnfldtopn |
⊢ 𝐽 = ( MetOpen ‘ ( abs ∘ − ) ) |
| 8 |
|
df-ii |
⊢ II = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) |
| 9 |
6 7 8
|
metrest |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( 𝐽 ↾t ( 0 [,] 1 ) ) = II ) |
| 10 |
2 5 9
|
mp2an |
⊢ ( 𝐽 ↾t ( 0 [,] 1 ) ) = II |
| 11 |
10
|
eqcomi |
⊢ II = ( 𝐽 ↾t ( 0 [,] 1 ) ) |