Description: Alternate definition of the unit interval. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfii4.1 | ⊢ 𝐼 = ( ℂfld ↾s ( 0 [,] 1 ) ) | |
| Assertion | dfii4 | ⊢ II = ( TopOpen ‘ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfii4.1 | ⊢ 𝐼 = ( ℂfld ↾s ( 0 [,] 1 ) ) | |
| 2 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 3 | 2 | dfii3 | ⊢ II = ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) |
| 4 | 1 2 | resstopn | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( 0 [,] 1 ) ) = ( TopOpen ‘ 𝐼 ) |
| 5 | 3 4 | eqtri | ⊢ II = ( TopOpen ‘ 𝐼 ) |