Description: Alternate definition of the unit interval. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfii4.1 | |- I = ( CCfld |`s ( 0 [,] 1 ) ) |
|
| Assertion | dfii4 | |- II = ( TopOpen ` I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfii4.1 | |- I = ( CCfld |`s ( 0 [,] 1 ) ) |
|
| 2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 3 | 2 | dfii3 | |- II = ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) |
| 4 | 1 2 | resstopn | |- ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) = ( TopOpen ` I ) |
| 5 | 3 4 | eqtri | |- II = ( TopOpen ` I ) |