Metamath Proof Explorer


Theorem reparpht

Description: Reparametrization lemma. The reparametrization of a path by any continuous map G : II --> II with G ( 0 ) = 0 and G ( 1 ) = 1 is path-homotopic to the original path. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses reparpht.2 ( 𝜑𝐹 ∈ ( II Cn 𝐽 ) )
reparpht.3 ( 𝜑𝐺 ∈ ( II Cn II ) )
reparpht.4 ( 𝜑 → ( 𝐺 ‘ 0 ) = 0 )
reparpht.5 ( 𝜑 → ( 𝐺 ‘ 1 ) = 1 )
Assertion reparpht ( 𝜑 → ( 𝐹𝐺 ) ( ≃ph𝐽 ) 𝐹 )

Proof

Step Hyp Ref Expression
1 reparpht.2 ( 𝜑𝐹 ∈ ( II Cn 𝐽 ) )
2 reparpht.3 ( 𝜑𝐺 ∈ ( II Cn II ) )
3 reparpht.4 ( 𝜑 → ( 𝐺 ‘ 0 ) = 0 )
4 reparpht.5 ( 𝜑 → ( 𝐺 ‘ 1 ) = 1 )
5 cnco ( ( 𝐺 ∈ ( II Cn II ) ∧ 𝐹 ∈ ( II Cn 𝐽 ) ) → ( 𝐹𝐺 ) ∈ ( II Cn 𝐽 ) )
6 2 1 5 syl2anc ( 𝜑 → ( 𝐹𝐺 ) ∈ ( II Cn 𝐽 ) )
7 eqid ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( ( 1 − 𝑦 ) · ( 𝐺𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( ( 1 − 𝑦 ) · ( 𝐺𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) )
8 1 2 3 4 7 reparphti ( 𝜑 → ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( ( ( 1 − 𝑦 ) · ( 𝐺𝑥 ) ) + ( 𝑦 · 𝑥 ) ) ) ) ∈ ( ( 𝐹𝐺 ) ( PHtpy ‘ 𝐽 ) 𝐹 ) )
9 8 ne0d ( 𝜑 → ( ( 𝐹𝐺 ) ( PHtpy ‘ 𝐽 ) 𝐹 ) ≠ ∅ )
10 isphtpc ( ( 𝐹𝐺 ) ( ≃ph𝐽 ) 𝐹 ↔ ( ( 𝐹𝐺 ) ∈ ( II Cn 𝐽 ) ∧ 𝐹 ∈ ( II Cn 𝐽 ) ∧ ( ( 𝐹𝐺 ) ( PHtpy ‘ 𝐽 ) 𝐹 ) ≠ ∅ ) )
11 6 1 9 10 syl3anbrc ( 𝜑 → ( 𝐹𝐺 ) ( ≃ph𝐽 ) 𝐹 )