| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reparpht.1 |
|- ( ph -> F e. ( II Cn J ) ) |
| 2 |
|
reparpht.2 |
|- ( ph -> G e. ( II Cn II ) ) |
| 3 |
|
reparpht.3 |
|- ( ph -> ( G ` 0 ) = 0 ) |
| 4 |
|
reparpht.4 |
|- ( ph -> ( G ` 1 ) = 1 ) |
| 5 |
|
cnco |
|- ( ( G e. ( II Cn II ) /\ F e. ( II Cn J ) ) -> ( F o. G ) e. ( II Cn J ) ) |
| 6 |
2 1 5
|
syl2anc |
|- ( ph -> ( F o. G ) e. ( II Cn J ) ) |
| 7 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) ) |
| 8 |
1 2 3 4 7
|
reparphti |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) ) e. ( ( F o. G ) ( PHtpy ` J ) F ) ) |
| 9 |
8
|
ne0d |
|- ( ph -> ( ( F o. G ) ( PHtpy ` J ) F ) =/= (/) ) |
| 10 |
|
isphtpc |
|- ( ( F o. G ) ( ~=ph ` J ) F <-> ( ( F o. G ) e. ( II Cn J ) /\ F e. ( II Cn J ) /\ ( ( F o. G ) ( PHtpy ` J ) F ) =/= (/) ) ) |
| 11 |
6 1 9 10
|
syl3anbrc |
|- ( ph -> ( F o. G ) ( ~=ph ` J ) F ) |