Metamath Proof Explorer


Theorem reparpht

Description: Reparametrization lemma. The reparametrization of a path by any continuous map G : II --> II with G ( 0 ) = 0 and G ( 1 ) = 1 is path-homotopic to the original path. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses reparpht.2
|- ( ph -> F e. ( II Cn J ) )
reparpht.3
|- ( ph -> G e. ( II Cn II ) )
reparpht.4
|- ( ph -> ( G ` 0 ) = 0 )
reparpht.5
|- ( ph -> ( G ` 1 ) = 1 )
Assertion reparpht
|- ( ph -> ( F o. G ) ( ~=ph ` J ) F )

Proof

Step Hyp Ref Expression
1 reparpht.2
 |-  ( ph -> F e. ( II Cn J ) )
2 reparpht.3
 |-  ( ph -> G e. ( II Cn II ) )
3 reparpht.4
 |-  ( ph -> ( G ` 0 ) = 0 )
4 reparpht.5
 |-  ( ph -> ( G ` 1 ) = 1 )
5 cnco
 |-  ( ( G e. ( II Cn II ) /\ F e. ( II Cn J ) ) -> ( F o. G ) e. ( II Cn J ) )
6 2 1 5 syl2anc
 |-  ( ph -> ( F o. G ) e. ( II Cn J ) )
7 eqid
 |-  ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) )
8 1 2 3 4 7 reparphti
 |-  ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) ) e. ( ( F o. G ) ( PHtpy ` J ) F ) )
9 8 ne0d
 |-  ( ph -> ( ( F o. G ) ( PHtpy ` J ) F ) =/= (/) )
10 isphtpc
 |-  ( ( F o. G ) ( ~=ph ` J ) F <-> ( ( F o. G ) e. ( II Cn J ) /\ F e. ( II Cn J ) /\ ( ( F o. G ) ( PHtpy ` J ) F ) =/= (/) ) )
11 6 1 9 10 syl3anbrc
 |-  ( ph -> ( F o. G ) ( ~=ph ` J ) F )