Metamath Proof Explorer


Theorem reparpht

Description: Reparametrization lemma. The reparametrization of a path by any continuous map G : II --> II with G ( 0 ) = 0 and G ( 1 ) = 1 is path-homotopic to the original path. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses reparpht.2 φFIICnJ
reparpht.3 φGIICnII
reparpht.4 φG0=0
reparpht.5 φG1=1
Assertion reparpht φFGphJF

Proof

Step Hyp Ref Expression
1 reparpht.2 φFIICnJ
2 reparpht.3 φGIICnII
3 reparpht.4 φG0=0
4 reparpht.5 φG1=1
5 cnco GIICnIIFIICnJFGIICnJ
6 2 1 5 syl2anc φFGIICnJ
7 eqid x01,y01F1yGx+yx=x01,y01F1yGx+yx
8 1 2 3 4 7 reparphti φx01,y01F1yGx+yxFGPHtpyJF
9 8 ne0d φFGPHtpyJF
10 isphtpc FGphJFFGIICnJFIICnJFGPHtpyJF
11 6 1 9 10 syl3anbrc φFGphJF