Metamath Proof Explorer


Theorem reparpht

Description: Reparametrization lemma. The reparametrization of a path by any continuous map G : II --> II with G ( 0 ) = 0 and G ( 1 ) = 1 is path-homotopic to the original path. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses reparpht.2 φ F II Cn J
reparpht.3 φ G II Cn II
reparpht.4 φ G 0 = 0
reparpht.5 φ G 1 = 1
Assertion reparpht φ F G ph J F

Proof

Step Hyp Ref Expression
1 reparpht.2 φ F II Cn J
2 reparpht.3 φ G II Cn II
3 reparpht.4 φ G 0 = 0
4 reparpht.5 φ G 1 = 1
5 cnco G II Cn II F II Cn J F G II Cn J
6 2 1 5 syl2anc φ F G II Cn J
7 eqid x 0 1 , y 0 1 F 1 y G x + y x = x 0 1 , y 0 1 F 1 y G x + y x
8 1 2 3 4 7 reparphti φ x 0 1 , y 0 1 F 1 y G x + y x F G PHtpy J F
9 8 ne0d φ F G PHtpy J F
10 isphtpc F G ph J F F G II Cn J F II Cn J F G PHtpy J F
11 6 1 9 10 syl3anbrc φ F G ph J F