Description: Reparametrization lemma. The reparametrization of a path by any continuous map G : II --> II with G ( 0 ) = 0 and G ( 1 ) = 1 is path-homotopic to the original path. (Contributed by Jeff Madsen, 15-Jun-2010) (Revised by Mario Carneiro, 23-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reparpht.2 | |
|
reparpht.3 | |
||
reparpht.4 | |
||
reparpht.5 | |
||
Assertion | reparpht | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reparpht.2 | |
|
2 | reparpht.3 | |
|
3 | reparpht.4 | |
|
4 | reparpht.5 | |
|
5 | cnco | |
|
6 | 2 1 5 | syl2anc | |
7 | eqid | |
|
8 | 1 2 3 4 7 | reparphti | |
9 | 8 | ne0d | |
10 | isphtpc | |
|
11 | 6 1 9 10 | syl3anbrc | |